首页 > 其他 > 详细

[实变函数]5.3 非负可测函数的 Lebesgue 积分

时间:2014-02-15 00:56:39      阅读:527      评论:0      收藏:0      [点我收藏+]

   本节中, 设 f,g,f_if,g,fbubuko.com,布布扣ibubuko.com,布布扣bubuko.com,布布扣 是可测集 EEbubuko.com,布布扣 上的非负可测函数, A,BA,Bbubuko.com,布布扣 EEbubuko.com,布布扣 的可测子集.    
   
1 定义:                

        (1) ffbubuko.com,布布扣 EEbubuko.com,布布扣 上的 Lebesgue 积分        \bex        \int_E f(x)\rd x        =\sup\sed{\int_E\phi(x)\rd x; 0\leq \phi\leq f}.        \eex

    bubuko.com,布布扣Ebubuko.com,布布扣f(x)dx    =sup{bubuko.com,布布扣Ebubuko.com,布布扣?(x)dx;0?f}.    bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
       

        (2) ffbubuko.com,布布扣 EEbubuko.com,布布扣 上 Lebesgue 可积 \dps{\lra \int_Ef(x)\rd x<+\infty}?bubuko.com,布布扣Ebubuko.com,布布扣f(x)dx<+bubuko.com,布布扣 .        

        (3) ffbubuko.com,布布扣 AAbubuko.com,布布扣 上的 Lebesgue 积分为    \bex    \int_A f(x)\rd x    =\int_E f(x)\chi_A(x)\rd x.    \eex

  bubuko.com,布布扣Abubuko.com,布布扣f(x)dx  =bubuko.com,布布扣Ebubuko.com,布布扣f(x)χbubuko.com,布布扣Abubuko.com,布布扣(x)dx.  bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
              

    

2 性质                
    (1) \dps{mE=0\ra \int_Ef(x)\rd x=0}mE=0?bubuko.com,布布扣Ebubuko.com,布布扣f(x)dx=0bubuko.com,布布扣 .    
    (2) \dps{\int_Ef(x)\rd x=0\ra f(x)=0,\ae}bubuko.com,布布扣Ebubuko.com,布布扣f(x)dx=0?f(x)=0,a.e. bubuko.com,布布扣 EEbubuko.com,布布扣 .    
    证明: 由    \bex    E[f>0]=\cup_{k=1}^\infty E\sez{f\geq\frac{1}{k}}    \eex

  E[f>0]=bubuko.com,布布扣bubuko.com,布布扣k=1bubuko.com,布布扣E[f1bubuko.com,布布扣kbubuko.com,布布扣bubuko.com,布布扣]  bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
   

    知仅须证明 \dps{mE\sez{f\geq \frac{1}{k}}=0}mE[f1bubuko.com,布布扣kbubuko.com,布布扣bubuko.com,布布扣]=0bubuko.com,布布扣 :    \beex    \bea    0&=\int_E f(x)\rd x        \geq \int_E \phi_k(x)\rd x\quad\sex{E_k=E\sez{f\geq \frac{1}{k}}, \phi_k(x)=\sedd{\ba{ll}        \frac{1}{k},&x\in E_k\\        0,&x\not\in E_k        \ea}}\\        &=\frac{1}{k}\cdot mE_k.    \eea    \eeex

    0bubuko.com,布布扣    bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣Ebubuko.com,布布扣f(x)dx    bubuko.com,布布扣Ebubuko.com,布布扣?bubuko.com,布布扣kbubuko.com,布布扣(x)dxbubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣Ebubuko.com,布布扣kbubuko.com,布布扣=E[f1bubuko.com,布布扣kbubuko.com,布布扣bubuko.com,布布扣],?bubuko.com,布布扣kbubuko.com,布布扣(x)=?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣    1bubuko.com,布布扣kbubuko.com,布布扣bubuko.com,布布扣,bubuko.com,布布扣    0,bubuko.com,布布扣bubuko.com,布布扣xEbubuko.com,布布扣kbubuko.com,布布扣bubuko.com,布布扣x?Ebubuko.com,布布扣kbubuko.com,布布扣    bubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=1bubuko.com,布布扣kbubuko.com,布布扣bubuko.com,布布扣?mEbubuko.com,布布扣kbubuko.com,布布扣.  bubuko.com,布布扣bubuko.com,布布扣  bubuko.com,布布扣
       

    (3) \dps{\int_Ef(x)\rd x<+\infty\ra 0\leq f(x)<+\infty,\ae}bubuko.com,布布扣Ebubuko.com,布布扣f(x)dx<+?0f(x)<+,a.e. bubuko.com,布布扣 EEbubuko.com,布布扣 .    

    证明: 仅须证明 E_\infty=E[f=+\infty]Ebubuko.com,布布扣bubuko.com,布布扣=E[f=+]bubuko.com,布布扣 为零测度集:    \beex    \bea    \int_Ef(x)&\geq \int_E \phi_k(x)\rd x       \quad\sex{\phi_k(x)=\sedd{\ba{ll}    k,&x\in E_\infty\\    0,&x\not\in E_\infty    \ea}}\\    &=k\cdot mE_\infty.    \eea    \eeex

    bubuko.com,布布扣Ebubuko.com,布布扣f(x)bubuko.com,布布扣  bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣Ebubuko.com,布布扣?bubuko.com,布布扣kbubuko.com,布布扣(x)dx    (?bubuko.com,布布扣kbubuko.com,布布扣(x)={  k,bubuko.com,布布扣  0,bubuko.com,布布扣bubuko.com,布布扣xEbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣x?Ebubuko.com,布布扣bubuko.com,布布扣  bubuko.com,布布扣bubuko.com,布布扣)bubuko.com,布布扣=k?mEbubuko.com,布布扣bubuko.com,布布扣.  bubuko.com,布布扣bubuko.com,布布扣  bubuko.com,布布扣
       

    (4) \dps{A\cap B=\vno\ra \int_{A\cup B}f(x)\rd x=\int_A f(x)\rd x+\int_Bf(x)\rd x}AB=??bubuko.com,布布扣ABbubuko.com,布布扣f(x)dx=bubuko.com,布布扣Abubuko.com,布布扣f(x)dx+bubuko.com,布布扣Bbubuko.com,布布扣f(x)dxbubuko.com,布布扣 .    

    证明: 对 A\cup BABbubuko.com,布布扣 上的简单函数 0\leq \phi\leq f0?fbubuko.com,布布扣 , 有    \bex    \int_{A\cup B}\phi(x)\rd x    =\int_A\phi(x)\rd x    +\int_B\phi(x)\rd x    \leq \int_Af(x)\rd x    +\int_Bf(x)\rd x;    \eex

  bubuko.com,布布扣ABbubuko.com,布布扣?(x)dx  =bubuko.com,布布扣Abubuko.com,布布扣?(x)dx  +bubuko.com,布布扣Bbubuko.com,布布扣?(x)dx  bubuko.com,布布扣Abubuko.com,布布扣f(x)dx  +bubuko.com,布布扣Bbubuko.com,布布扣f(x)dx;  bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
   \bex    \int_A\phi(x)\rd x    +\int_B\phi(x)\rd x    =\int_{A\cup B}\phi(x)\rd x    \leq\int_{A\cup B}f(x)\rd x.    \eex
  bubuko.com,布布扣Abubuko.com,布布扣?(x)dx  +bubuko.com,布布扣Bbubuko.com,布布扣?(x)dx  =bubuko.com,布布扣ABbubuko.com,布布扣?(x)dx  bubuko.com,布布扣ABbubuko.com,布布扣f(x)dx.  bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
       

    (5) \dps{f\leq g\ae\ra \int_E f(x)\rd x    \leq\int_E g(x)\rd x}fga.e. ?bubuko.com,布布扣Ebubuko.com,布布扣f(x)dx  bubuko.com,布布扣Ebubuko.com,布布扣g(x)dxbubuko.com,布布扣 .    

    证明: 设 E_1=E[f\leq g], E_2=E[f>g]Ebubuko.com,布布扣1bubuko.com,布布扣=E[fg],Ebubuko.com,布布扣2bubuko.com,布布扣=E[f>g]bubuko.com,布布扣 , 则 mE_2=0mEbubuko.com,布布扣2bubuko.com,布布扣=0bubuko.com,布布扣 , 而    \beex    \bea    \int_Ef(x)\rd x    &=\int_{E_1}f(x)\rd x        +\int_{E_2}f(x)\rd x\\    &=\int_{E_1}f(x)\rd x\\    &\leq \int_{E_1}g(x)\rd x\quad\sex{0\leq \phi \leq f\ra 0\leq \phi\leq g}\\    &=\int_{E_1}g(x)\rd x        +\int_{E_2}g(x)\rd x\\    &=\int_E g(x)\rd x.    \eea    \eeex

    bubuko.com,布布扣Ebubuko.com,布布扣f(x)dx  bubuko.com,布布扣  bubuko.com,布布扣  bubuko.com,布布扣  bubuko.com,布布扣  bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣Ebubuko.com,布布扣1bubuko.com,布布扣bubuko.com,布布扣f(x)dx    +bubuko.com,布布扣Ebubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣f(x)dxbubuko.com,布布扣=bubuko.com,布布扣Ebubuko.com,布布扣1bubuko.com,布布扣bubuko.com,布布扣f(x)dxbubuko.com,布布扣bubuko.com,布布扣Ebubuko.com,布布扣1bubuko.com,布布扣bubuko.com,布布扣g(x)dx(0?f?0?g)bubuko.com,布布扣=bubuko.com,布布扣Ebubuko.com,布布扣1bubuko.com,布布扣bubuko.com,布布扣g(x)dx    +bubuko.com,布布扣Ebubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣g(x)dxbubuko.com,布布扣=bubuko.com,布布扣Ebubuko.com,布布扣g(x)dx.  bubuko.com,布布扣bubuko.com,布布扣  bubuko.com,布布扣
       

    (6) \dps{f=g,\ae\ra \int_E f(x)\rd x=\int_E g(x)\rd x}f=g,a.e. ?bubuko.com,布布扣Ebubuko.com,布布扣f(x)dx=bubuko.com,布布扣Ebubuko.com,布布扣g(x)dxbubuko.com,布布扣 .    
    特别地, \dps{f=0,\ae\ra \int_Ef(x)\rd x=0}f=0,a.e. ?bubuko.com,布布扣Ebubuko.com,布布扣f(x)dx=0bubuko.com,布布扣 .    

    (7) (Levi 单增列)    \bex    f_i\mbox{ 单增}, \lim_{i\to\infty}f_i=f\ra    \lim_{i\to\infty}\int_E f_i(x)\rd x    =\int_E f(x)\rd x.    \eex

  fbubuko.com,布布扣ibubuko.com,布布扣 单增,limbubuko.com,布布扣ibubuko.com,布布扣fbubuko.com,布布扣ibubuko.com,布布扣=f?  limbubuko.com,布布扣ibubuko.com,布布扣bubuko.com,布布扣Ebubuko.com,布布扣fbubuko.com,布布扣ibubuko.com,布布扣(x)dx  =bubuko.com,布布扣Ebubuko.com,布布扣f(x)dx.  bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
   

    证明: 由 f_i\leq ffbubuko.com,布布扣ibubuko.com,布布扣fbubuko.com,布布扣 \leqbubuko.com,布布扣 . 往证 \geqbubuko.com,布布扣 . 对 \forall\ 0\leq \phi\leq f? 0?fbubuko.com,布布扣 , \forall\ 0<c<1? 0<c<1bubuko.com,布布扣 ,    \beex    \bea    &\quad \int_Ef_i(x)\rd x        \geq \int_{E_i}f_i(x)\rd x        \geq c\int_{E_i}\phi(x)\rd x        \quad\sex{E_i=E[f_i\geq c\phi]}\\    &\ra \int_E f_i(x)\rd x\geq c\int_E \phi(x)\rd x\quad\sex{E_i\mbox{ 单增}, \cup_{i=1}^\infty E_i=E:\mbox{ 这里需要 }0<c<1!}.    \eea    \eeex

 bubuko.com,布布扣   bubuko.com,布布扣  bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣Ebubuko.com,布布扣fbubuko.com,布布扣ibubuko.com,布布扣(x)dx    bubuko.com,布布扣Ebubuko.com,布布扣ibubuko.com,布布扣bubuko.com,布布扣fbubuko.com,布布扣ibubuko.com,布布扣(x)dx    cbubuko.com,布布扣Ebubuko.com,布布扣ibubuko.com,布布扣bubuko.com,布布扣?(x)dx    (Ebubuko.com,布布扣ibubuko.com,布布扣=E[fbubuko.com,布布扣ibubuko.com,布布扣c?])bubuko.com,布布扣?bubuko.com,布布扣Ebubuko.com,布布扣fbubuko.com,布布扣ibubuko.com,布布扣(x)dxcbubuko.com,布布扣Ebubuko.com,布布扣?(x)dx(Ebubuko.com,布布扣ibubuko.com,布布扣 单增,bubuko.com,布布扣bubuko.com,布布扣i=1bubuko.com,布布扣Ebubuko.com,布布扣ibubuko.com,布布扣=E: 这里需要 0<c<1!).  bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣  bubuko.com,布布扣bubuko.com,布布扣
       

    (8) (正线性性)    \dps{\int_E[\alpha f(x)+\beta g(x)]\rd x    =\alpha \int_E f(x)\rd x    +\beta \int_E g(x)\rd x}bubuko.com,布布扣Ebubuko.com,布布扣[αf(x)+βg(x)]dx  =αbubuko.com,布布扣Ebubuko.com,布布扣f(x)dx  +βbubuko.com,布布扣Ebubuko.com,布布扣g(x)dxbubuko.com,布布扣 .     

    证明:    \beex    \bea    &\quad 0\leq \phi_i\nearrow f,\quad    0\leq \psi_i\nearrow g\\    &\ra 0\leq \alpha \phi_i+\beta \psi_i\nearrow \alpha f+\beta g\\    &\ra \int_E [\alpha f(x)+\beta g(x)]    \rd x    =\lim_{i\to\infty}\int_E[\alpha \phi_i(x)+\beta \psi(x)]\rd x\\    &\qquad\qquad =\alpha \lim_{i\to\infty}        \int_E\phi_i(x)\rd x        +\beta \lim_{i\to\infty}        \int_E \psi_i(x)\rd x\\    &\qquad\qquad =\alpha \int_E f(x)\rd x    +\beta \int_E g(x)\rd x\quad\sex{\mbox{Levi 单增列}}.    \eea    \eeex

    bubuko.com,布布扣  bubuko.com,布布扣  bubuko.com,布布扣  bubuko.com,布布扣  bubuko.com,布布扣bubuko.com,布布扣0?bubuko.com,布布扣ibubuko.com,布布扣f,  0ψbubuko.com,布布扣ibubuko.com,布布扣gbubuko.com,布布扣?0α?bubuko.com,布布扣ibubuko.com,布布扣+βψbubuko.com,布布扣ibubuko.com,布布扣αf+βgbubuko.com,布布扣?bubuko.com,布布扣Ebubuko.com,布布扣[αf(x)+βg(x)]  dx  =limbubuko.com,布布扣ibubuko.com,布布扣bubuko.com,布布扣Ebubuko.com,布布扣[α?bubuko.com,布布扣ibubuko.com,布布扣(x)+βψ(x)]dxbubuko.com,布布扣=αlimbubuko.com,布布扣ibubuko.com,布布扣    bubuko.com,布布扣Ebubuko.com,布布扣?bubuko.com,布布扣ibubuko.com,布布扣(x)dx    +βlimbubuko.com,布布扣ibubuko.com,布布扣    bubuko.com,布布扣Ebubuko.com,布布扣ψbubuko.com,布布扣ibubuko.com,布布扣(x)dxbubuko.com,布布扣=αbubuko.com,布布扣Ebubuko.com,布布扣f(x)dx  +βbubuko.com,布布扣Ebubuko.com,布布扣g(x)dx(Levi 单增列).  bubuko.com,布布扣bubuko.com,布布扣  bubuko.com,布布扣
      (9) (逐项积分) \dps{\int_E \sum_{i=1}^\infty f_i(x)\rd x        =\sum_{i=1}^\infty \int_Ef_i(x)\rd x}bubuko.com,布布扣Ebubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣i=1bubuko.com,布布扣fbubuko.com,布布扣ibubuko.com,布布扣(x)dx    =bubuko.com,布布扣bubuko.com,布布扣i=1bubuko.com,布布扣bubuko.com,布布扣Ebubuko.com,布布扣fbubuko.com,布布扣ibubuko.com,布布扣(x)dxbubuko.com,布布扣 .    

    证明:    \beex    \bea    \int_E \sum_{i=1}^\infty f_i(x)\rd x    &=\int_E \lim_{j\to\infty}\sum_{i=1}^j f_i(x)\rd x\\    &=\lim_{j\to\infty}\int_E\sum_{i=1}^j f_i(x)\rd x\quad\sex{\mbox{Levi 单增列}}\\    &=\lim_{j\to\infty}\sum_{i=1}^j \int_Ef_i(x)\rd x\\    &=\sum_{i=1}^\infty \int_E f_i(x)\rd x.    \eea    \eeex

    bubuko.com,布布扣Ebubuko.com,布布扣bubuko.com,布布扣i=1bubuko.com,布布扣bubuko.com,布布扣fbubuko.com,布布扣ibubuko.com,布布扣(x)dx  bubuko.com,布布扣  bubuko.com,布布扣  bubuko.com,布布扣  bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣Ebubuko.com,布布扣limbubuko.com,布布扣jbubuko.com,布布扣bubuko.com,布布扣i=1bubuko.com,布布扣jbubuko.com,布布扣fbubuko.com,布布扣ibubuko.com,布布扣(x)dxbubuko.com,布布扣=limbubuko.com,布布扣jbubuko.com,布布扣bubuko.com,布布扣Ebubuko.com,布布扣bubuko.com,布布扣i=1bubuko.com,布布扣jbubuko.com,布布扣fbubuko.com,布布扣ibubuko.com,布布扣(x)dx(Levi 单增列)bubuko.com,布布扣=limbubuko.com,布布扣jbubuko.com,布布扣bubuko.com,布布扣i=1bubuko.com,布布扣jbubuko.com,布布扣bubuko.com,布布扣Ebubuko.com,布布扣fbubuko.com,布布扣ibubuko.com,布布扣(x)dxbubuko.com,布布扣=bubuko.com,布布扣i=1bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣Ebubuko.com,布布扣fbubuko.com,布布扣ibubuko.com,布布扣(x)dx.  bubuko.com,布布扣bubuko.com,布布扣  bubuko.com,布布扣
   
    (10) Fatou 引理 \dps{\int_E \varliminf_{i\to\infty}f_i(x)\rd x\leq \varliminf_{i\to\infty}\int_Ef_i(x)\rd x}bubuko.com,布布扣Ebubuko.com,布布扣limbubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣ibubuko.com,布布扣fbubuko.com,布布扣ibubuko.com,布布扣(x)dxlimbubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣ibubuko.com,布布扣bubuko.com,布布扣Ebubuko.com,布布扣fbubuko.com,布布扣ibubuko.com,布布扣(x)dxbubuko.com,布布扣 .    
   证明:    \beex    \bea    \int_E\varliminf_{i\to\infty}f_i(x)\rd x    &=\int_E \lim_{j\to\infty}\inf_{i\geq j}f_i(x)\rd x\\    &=\lim_{j\to\infty}\int_E\inf_{i\geq j}f_i(x)\rd x\quad\sex{\mbox{Levi 单增列}}\\    &\leq \varliminf_{j\to\infty}        \int_Ef_j(x)\rd x        \quad\sex{\inf_{i\geq j}f_i\leq f_j\mbox{ 两边积分后取下极限}}.    \eea    \eeex
 bubuko.com,布布扣   bubuko.com,布布扣Ebubuko.com,布布扣limbubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣ibubuko.com,布布扣fbubuko.com,布布扣ibubuko.com,布布扣(x)dx  bubuko.com,布布扣  bubuko.com,布布扣  bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣Ebubuko.com,布布扣limbubuko.com,布布扣jbubuko.com,布布扣infbubuko.com,布布扣ijbubuko.com,布布扣fbubuko.com,布布扣ibubuko.com,布布扣(x)dxbubuko.com,布布扣=limbubuko.com,布布扣jbubuko.com,布布扣bubuko.com,布布扣Ebubuko.com,布布扣infbubuko.com,布布扣ijbubuko.com,布布扣fbubuko.com,布布扣ibubuko.com,布布扣(x)dx(Levi 单增列)bubuko.com,布布扣limbubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣jbubuko.com,布布扣    bubuko.com,布布扣Ebubuko.com,布布扣fbubuko.com,布布扣jbubuko.com,布布扣(x)dx    (infbubuko.com,布布扣ijbubuko.com,布布扣fbubuko.com,布布扣ibubuko.com,布布扣fbubuko.com,布布扣jbubuko.com,布布扣 两边积分后取下极限).  bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣  bubuko.com,布布扣bubuko.com,布布扣
           

 

3 例                

    (1) 设 \sed{r_k} [0,1] 中的全体有理数, 则    \bex    \sum_{k=1}^\infty \frac{1}{k^2\sqrt{|x-r_k|}}\ae\mbox{ 收敛}.    \eex

   证明:    \bex    \int_{[0,1]}\sum_{k=1}^\infty \frac{1}{k^2\sqrt{|x-r_k|}}\rd x    =\sum_{k=1}^\infty\frac{1}{k^2} \int_{[0,1]}\frac{1}{\sqrt{|x-r_k|}}\rd x<\infty.    \eex
     

    (2) 设 \sed{E_i}_{i=1}^j\ (\subset [0,1]) 可测, [0,1] 中任一点均属于 \sed{E_i}_{i=1}^j 中的 q 个, 则 \exists\ i_0,\st mE_{i_0}\geq q/j .    

    证明:    \bex    \sum_{i=1}^j \chi_{E_i}(x)\geq q    \ra \sum_{i=1}^j mE_i=\sum_{i=1}^j \int_{[0,1]}\chi_{E_i}(x)\rd x    =\int_{[0,1]}\sum_{i=1}^j \chi_{E_i}(x)\rd x    \geq q.    \eex

     

4 作业: Page 132 T 6, Page 133 T 7.    

[实变函数]5.3 非负可测函数的 Lebesgue 积分

原文:http://www.cnblogs.com/zhangzujin/p/3549205.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!