首页 > 其他 > 详细

[实变函数]5.2 非负简单函数的 Lebesgue 积分

时间:2014-02-15 00:58:54      阅读:601      评论:0      收藏:0      [点我收藏+]

1 设       

    ?(x)=bubuko.com,布布扣i=1bubuko.com,布布扣jbubuko.com,布布扣cbubuko.com,布布扣ibubuko.com,布布扣χbubuko.com,布布扣Ebubuko.com,布布扣ibubuko.com,布布扣bubuko.com,布布扣(x),cbubuko.com,布布扣ibubuko.com,布布扣0,    bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
       

    其中       

    Ebubuko.com,布布扣ibubuko.com,布布扣 可测,Ebubuko.com,布布扣ibubuko.com,布布扣 两两不交,E=bubuko.com,布布扣jbubuko.com,布布扣i=1bubuko.com,布布扣Ebubuko.com,布布扣ibubuko.com,布布扣,    bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
       

    则定义       

    bubuko.com,布布扣Ebubuko.com,布布扣?(x)dx=bubuko.com,布布扣i=1bubuko.com,布布扣jbubuko.com,布布扣cbubuko.com,布布扣ibubuko.com,布布扣?mEbubuko.com,布布扣ibubuko.com,布布扣.    bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
       

    若 A(?E)bubuko.com,布布扣 可测, 则定义       

    bubuko.com,布布扣Abubuko.com,布布扣?(x)dx=bubuko.com,布布扣i=1bubuko.com,布布扣jbubuko.com,布布扣cbubuko.com,布布扣ibubuko.com,布布扣?m(Ebubuko.com,布布扣ibubuko.com,布布扣A).    bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
   

2 例: D(x)={  1,bubuko.com,布布扣  0,bubuko.com,布布扣bubuko.com,布布扣xQ,bubuko.com,布布扣xR?Q  bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣 的积分为    

  bubuko.com,布布扣Rbubuko.com,布布扣D(x)dx  =1?m(Q)+0?m(R?Q)=0.  bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
   

 

3 性质: 设 ?(x),ψ(x)bubuko.com,布布扣 为非负简单函数, 则                

    (1) 正齐次性    

  c0?bubuko.com,布布扣Ebubuko.com,布布扣c?(x)dx    =cbubuko.com,布布扣Ebubuko.com,布布扣?(x)dx.  bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
   

    证明:    

    bubuko.com,布布扣Ebubuko.com,布布扣c?(x)dx  =bubuko.com,布布扣i=1bubuko.com,布布扣jbubuko.com,布布扣ccbubuko.com,布布扣ibubuko.com,布布扣?mEbubuko.com,布布扣ibubuko.com,布布扣  =cbubuko.com,布布扣i=1bubuko.com,布布扣jbubuko.com,布布扣cbubuko.com,布布扣ibubuko.com,布布扣?mEbubuko.com,布布扣ibubuko.com,布布扣  =cbubuko.com,布布扣Ebubuko.com,布布扣?(x)dx.  bubuko.com,布布扣bubuko.com,布布扣  bubuko.com,布布扣
   

    (2) 有限可加性    

  bubuko.com,布布扣Ebubuko.com,布布扣[?(x)+ψ(x)]dx  =bubuko.com,布布扣Ebubuko.com,布布扣?(x)dx  +bubuko.com,布布扣Ebubuko.com,布布扣ψ(x)dx.  bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
   

    证明:    

    bubuko.com,布布扣  bubuko.com,布布扣  bubuko.com,布布扣  bubuko.com,布布扣  bubuko.com,布布扣  bubuko.com,布布扣bubuko.com,布布扣?(x)=bubuko.com,布布扣i=1bubuko.com,布布扣jbubuko.com,布布扣cbubuko.com,布布扣ibubuko.com,布布扣χbubuko.com,布布扣Ebubuko.com,布布扣ibubuko.com,布布扣bubuko.com,布布扣,  ψ(x)=bubuko.com,布布扣k=1bubuko.com,布布扣lbubuko.com,布布扣dbubuko.com,布布扣kbubuko.com,布布扣χbubuko.com,布布扣Fbubuko.com,布布扣kbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣??(x)+ψ(x)  =bubuko.com,布布扣i=1bubuko.com,布布扣jbubuko.com,布布扣  bubuko.com,布布扣k=1bubuko.com,布布扣lbubuko.com,布布扣  (cbubuko.com,布布扣ibubuko.com,布布扣+dbubuko.com,布布扣kbubuko.com,布布扣)χbubuko.com,布布扣Ebubuko.com,布布扣ibubuko.com,布布扣Fbubuko.com,布布扣kbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣Ebubuko.com,布布扣[?(x)+ψ(x)]dx    =bubuko.com,布布扣i=1bubuko.com,布布扣jbubuko.com,布布扣  bubuko.com,布布扣k=1bubuko.com,布布扣lbubuko.com,布布扣(cbubuko.com,布布扣ibubuko.com,布布扣+dbubuko.com,布布扣kbubuko.com,布布扣)?m(Ebubuko.com,布布扣ibubuko.com,布布扣Fbubuko.com,布布扣kbubuko.com,布布扣)bubuko.com,布布扣  =  bubuko.com,布布扣i=1bubuko.com,布布扣jbubuko.com,布布扣cbubuko.com,布布扣ibubuko.com,布布扣bubuko.com,布布扣k=1bubuko.com,布布扣lbubuko.com,布布扣m(Ebubuko.com,布布扣ibubuko.com,布布扣Fbubuko.com,布布扣kbubuko.com,布布扣)  +bubuko.com,布布扣k=1bubuko.com,布布扣lbubuko.com,布布扣dbubuko.com,布布扣kbubuko.com,布布扣bubuko.com,布布扣i=1bubuko.com,布布扣jbubuko.com,布布扣m(Ebubuko.com,布布扣ibubuko.com,布布扣Fbubuko.com,布布扣kbubuko.com,布布扣)bubuko.com,布布扣  =bubuko.com,布布扣i=1bubuko.com,布布扣jbubuko.com,布布扣cbubuko.com,布布扣ibubuko.com,布布扣?mEbubuko.com,布布扣ibubuko.com,布布扣  +bubuko.com,布布扣k=1bubuko.com,布布扣lbubuko.com,布布扣dbubuko.com,布布扣kbubuko.com,布布扣?mFbubuko.com,布布扣kbubuko.com,布布扣bubuko.com,布布扣  =  bubuko.com,布布扣Ebubuko.com,布布扣?(x)dx  +bubuko.com,布布扣Ebubuko.com,布布扣ψ(x)dx.  bubuko.com,布布扣bubuko.com,布布扣  bubuko.com,布布扣
   

    (3) 对积分区域的有限可加性    

  A,B(?E) 可测?  bubuko.com,布布扣ABbubuko.com,布布扣?(x)dx  =bubuko.com,布布扣Abubuko.com,布布扣?(x)dx  +bubuko.com,布布扣Bbubuko.com,布布扣?(x)dx.  bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
   

    证明:    

    bubuko.com,布布扣ABbubuko.com,布布扣?(x)dx  bubuko.com,布布扣  bubuko.com,布布扣  bubuko.com,布布扣  bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣i=1bubuko.com,布布扣jbubuko.com,布布扣cbubuko.com,布布扣ibubuko.com,布布扣?m(E(AB))bubuko.com,布布扣=bubuko.com,布布扣i=1bubuko.com,布布扣jbubuko.com,布布扣cbubuko.com,布布扣ibubuko.com,布布扣?[m(EA)+m(EB)]bubuko.com,布布扣(在可测集 A 的定义中取试验集 T=E(AB))bubuko.com,布布扣=bubuko.com,布布扣Abubuko.com,布布扣?(x)dx  +bubuko.com,布布扣Bbubuko.com,布布扣?(x)dx.  bubuko.com,布布扣bubuko.com,布布扣  bubuko.com,布布扣

    (4) 单增积分区域的极限    

  Abubuko.com,布布扣ibubuko.com,布布扣(?E) 单增?  limbubuko.com,布布扣ibubuko.com,布布扣bubuko.com,布布扣Abubuko.com,布布扣ibubuko.com,布布扣bubuko.com,布布扣?(x)dx  =bubuko.com,布布扣limbubuko.com,布布扣ibubuko.com,布布扣Abubuko.com,布布扣ibubuko.com,布布扣bubuko.com,布布扣?(x)dx.  bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
   

    证明:    

    limbubuko.com,布布扣ibubuko.com,布布扣bubuko.com,布布扣Abubuko.com,布布扣ibubuko.com,布布扣bubuko.com,布布扣?(x)dx  bubuko.com,布布扣  bubuko.com,布布扣  bubuko.com,布布扣bubuko.com,布布扣=limbubuko.com,布布扣ibubuko.com,布布扣bubuko.com,布布扣i=1bubuko.com,布布扣jbubuko.com,布布扣cbubuko.com,布布扣ibubuko.com,布布扣?m(EAbubuko.com,布布扣ibubuko.com,布布扣)bubuko.com,布布扣=bubuko.com,布布扣i=1bubuko.com,布布扣jbubuko.com,布布扣cbubuko.com,布布扣ibubuko.com,布布扣?m(Elimbubuko.com,布布扣ibubuko.com,布布扣Abubuko.com,布布扣ibubuko.com,布布扣)bubuko.com,布布扣=bubuko.com,布布扣limbubuko.com,布布扣ibubuko.com,布布扣Abubuko.com,布布扣ibubuko.com,布布扣bubuko.com,布布扣?(x)dx.  bubuko.com,布布扣bubuko.com,布布扣  bubuko.com,布布扣
   

           
   4 作业: Page 132 T 2.    

[实变函数]5.2 非负简单函数的 Lebesgue 积分

原文:http://www.cnblogs.com/zhangzujin/p/3549203.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!