首页 > 其他 > 详细

Flink统计当日的UV、PV

时间:2019-05-24 21:27:59      阅读:1069      评论:0      收藏:0      [点我收藏+]

  Flink 统计当日的UV、PV

  测试环境:

    flink 1.7.2

  1、数据流程

    技术分享图片

    a.模拟数据生成,发送到kafka(json 格式)  

    b.flink 读取数据,count

    c. 输出数据到kafka(为了方便查看,输出了一份到控制台)

  2、模拟数据生成器

    数据格式如下 : {"id" : 1, "createTime" : "2019-05-24 10:36:43.707"}

    id 为数据生成的序号(累加),时间为数据时间(默认为数据生成时间)

  模拟数据生成器代码如下:

  

/**
  * test data maker
  */

object CurrentDayMaker {


  var minute : Int = 1
  val calendar: Calendar = Calendar.getInstance()

  /**
    * 一天时间比较长,不方便观察,将时间改为当前时间,
    * 每次累加10分钟,这样一天只需要144次循环,也就是144秒
    * @return
    */
  def getCreateTime(): String = {
//    minute = minute + 1
    calendar.add(Calendar.MINUTE, 10)
    sdf.format(calendar.getTime)
  }
  val sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS")

  def main(args: Array[String]): Unit = {
    val producer = new KafkaProducer[String, String](Common.getProp)
  // 初始化开始时间为当前时间 calendar.setTime(
new Date()) println(sdf.format(calendar.getTime)) var i =0; while (true) { // val map = Map("id"-> i, "createTime"-> sdf.format(System.currentTimeMillis())) val map = Map("id"-> i, "createTime"-> getCreateTime()) val jsonObject: JSONObject = new JSONObject(map) println(jsonObject.toString())     // topic current_day val msg = new ProducerRecord[String, String]("current_day", jsonObject.toString()) producer.send(msg) producer.flush()
    // 控制数据频率 Thread.sleep(
1000) i = i + 1 } } }

  生成数据如下:  

{"id" : 0, "createTime" : "2019-05-24 18:02:26.292"}
{"id" : 1, "createTime" : "2019-05-24 18:12:26.292"}
{"id" : 2, "createTime" : "2019-05-24 18:22:26.292"}
{"id" : 3, "createTime" : "2019-05-24 18:32:26.292"}
{"id" : 4, "createTime" : "2019-05-24 18:42:26.292"}

  3、flink 程序  

/**
  * Created by venn on 19-5-23.
  *
  * use TumblingEventTimeWindows count current day pv
  * for test, update day window to minute window
  *
  *  .windowAll(TumblingEventTimeWindows.of(Time.minutes(1), Time.seconds(0)))
  *  TumblingEventTimeWindows can ensure count o minute event,
  *  and time start at 0 second (like : 00:00:00 to 00:00:59)
  *
  */
object CurrentDayPvCount {

  def main(args: Array[String]): Unit = {
    // environment
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
    env.setParallelism(1)
    val topic = "current_day"
    val sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS")
    val kafkaSource = new FlinkKafkaConsumer[ObjectNode](topic, new JsonNodeDeserializationSchema(), Common.getProp)
    val sink = new FlinkKafkaProducer[String](topic + "_out", new SimpleStringSchema(), Common.getProp)
    sink.setWriteTimestampToKafka(true)

    val stream = env.addSource(kafkaSource)
      .map(node => {
        Event(node.get("id").asText(), node.get("createTime").asText())
      })
            .assignAscendingTimestamps(event => sdf.parse(event.createTime).getTime)
      // 1分钟的window,默认offset 为 0 毫秒
      //.windowAll(TumblingEventTimeWindows.of(Time.minutes(1)))
      // 1小时的window,默认offset 为 0
//      .windowAll(TumblingEventTimeWindows.of(Time.hours(1)))
      // 一天的窗口,从 0 点开始, 这里有个bug(FLINK-11326), offset 不能使用负数, 1.8 修复
      .windowAll(TumblingEventTimeWindows.of(Time.days(1), Time.hours(-8)))
      // 触发器事件时间,一分钟输出一次(这里有个问题: 窗口结束不会触发窗口函数(reduce),可能会漏数据;
    // 如触发时间上一次是 23:59:00,下一次时间是 下一天的 00:01:00,23:59到 00:00 的数据会丢失)
// .trigger(ContinuousEventTimeTrigger.of(Time.seconds(60))) // 触发器处理时间,一分钟输出一次,处理时间与事件时间有类似的问题 // .trigger(ContinuousProcessingTimeTrigger.of(Time.seconds(60))) // 触发器,多少条数据触发一次 .trigger(CountTrigger.of(1)) .reduce(new ReduceFunction[Event] { override def reduce(event1: Event, event2: Event): Event = {       // 将结果中,id的最小值和最大值输出 new Event(event1.id , event2.id , event1.count + event2.count) } }) stream.print("result : ") // execute job env.execute("CurrentDayCount") } } case class Event(id: String, createTime: String, count: Int = 1) {}

4、运行结果

  测试数据如下:

    

{"id" : 0, "createTime" : "2019-05-24 20:29:49.102"}
{"id" : 1, "createTime" : "2019-05-24 20:39:49.102"}
...
{"id" : 20, "createTime" : "2019-05-24 23:49:49.102"}
{"id" : 21, "createTime" : "2019-05-24 23:59:49.102"}
{"id" : 22, "createTime" : "2019-05-25 00:09:49.102"}
{"id" : 23, "createTime" : "2019-05-25 00:19:49.102"}
...
{"id" : 163, "createTime" : "2019-05-25 23:39:49.102"}
{"id" : 164, "createTime" : "2019-05-25 23:49:49.102"}
{"id" : 165, "createTime" : "2019-05-25 23:59:49.102"}
{"id" : 166, "createTime" : "2019-05-26 00:09:49.102"}
...
{"id" : 308, "createTime" : "2019-05-26 23:49:49.102"}
{"id" : 309, "createTime" : "2019-05-26 23:59:49.102"}
{"id" : 310, "createTime" : "2019-05-27 00:09:49.102"}

0 - 21 是 24号

22 -  165 是 25 号

166 - 309 是 26 号

输出结果(程序中reduce 方法,将窗口中第一条和最后一条数据的id,都放到 Event中 )如下:

  技术分享图片

与测试数据对应

5、说明

  很多人会错误的以为,窗口时间的开始时间会是程序启动(初始化)的时间。事实上,窗口(以TumblingEventTimeWindows为例)的定义有两个重载的方法:包含两个参数,窗口的长度窗口的offset(默认为0) 

源码:org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows : 


@PublicEvolving
public class TumblingEventTimeWindows extends WindowAssigner<Object, TimeWindow> {
    private static final long serialVersionUID = 1L;

    private final long size;

    private final long offset;

    protected TumblingEventTimeWindows(long size, long offset) {
        if (Math.abs(offset) >= size) {
            throw new IllegalArgumentException("TumblingEventTimeWindows parameters must satisfy abs(offset) < size");
        }

        this.size = size;
        this.offset = offset;
    }

    @Override
    public Collection<TimeWindow> assignWindows(Object element, long timestamp, WindowAssignerContext context) {
        if (timestamp > Long.MIN_VALUE) {
            // Long.MIN_VALUE is currently assigned when no timestamp is present
            long start = TimeWindow.getWindowStartWithOffset(timestamp, offset, size);
            System.out.println("start : " + start + ", end : " + (start+size));
            String startStr =new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS").format(start);
            String endStar =new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS").format(start + size);
            System.out.println("window start: " + new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS").format(start));
            System.out.println("window end: " + new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS").format(start + size));
            return Collections.singletonList(new TimeWindow(start, start + size));
        } else {
            throw new RuntimeException("Record has Long.MIN_VALUE timestamp (= no timestamp marker). " +
                    "Is the time characteristic set to ‘ProcessingTime‘, or did you forget to call " +
                    "‘DataStream.assignTimestampsAndWatermarks(...)‘?");
        }
    }/**
     * Creates a new {@code TumblingEventTimeWindows} {@link WindowAssigner} that assigns
     * elements to time windows based on the element timestamp.
     *
     * @param size The size of the generated windows.
     * @return The time policy.
     */
    public static TumblingEventTimeWindows of(Time size) {
        return new TumblingEventTimeWindows(size.toMilliseconds(), 0);
    }

    /**
     * Creates a new {@code TumblingEventTimeWindows} {@link WindowAssigner} that assigns
     * elements to time windows based on the element timestamp and offset.
     *
     * <p>For example, if you want window a stream by hour,but window begins at the 15th minutes
     * of each hour, you can use {@code of(Time.hours(1),Time.minutes(15))},then you will get
     * time windows start at 0:15:00,1:15:00,2:15:00,etc.
     *
     * <p>Rather than that,if you are living in somewhere which is not using UTC±00:00 time,
     * such as China which is using UTC+08:00,and you want a time window with size of one day,
     * and window begins at every 00:00:00 of local time,you may use {@code of(Time.days(1),Time.hours(-8))}.
     * The parameter of offset is {@code Time.hours(-8))} since UTC+08:00 is 8 hours earlier than UTC time.
     *
     * @param size The size of the generated windows.
     * @param offset The offset which window start would be shifted by.
     * @return The time policy.
     */
    public static TumblingEventTimeWindows of(Time size, Time offset) {
        return new TumblingEventTimeWindows(size.toMilliseconds(), offset.toMilliseconds());
    }
}

每条数据都会触发: assignWindows 方法

计算函数如下:

public static long getWindowStartWithOffset(long timestamp, long offset, long windowSize) {
        return timestamp - (timestamp - offset + windowSize) % windowSize;
    }

dubug 如下:

技术分享图片

 

  6、特别说明

    FLink 1.6.3/1.7.1/1.7.2 在 TumblingEventTimeWindows 构造器上有个bug:offset 不能小于0, 但是of 方法中又说明,可以使用: of(Time.days(1),Time.hours(-8)) 表示在中国的 0 点开始的一天窗口。

 JIRA : FLINK-11326 ,jira 上注明1.8.0 修复。(我本来准备提个bug的,有人先下手了)

 

这个bug 可以通过自己创建一个相同包的相同类,将对应代码修改即可。

flink 1.7.2 源码:

protected TumblingEventTimeWindows(long size, long offset) {
        if (offset < 0 || offset >= size) {
            throw new IllegalArgumentException("TumblingEventTimeWindows parameters must satisfy 0 <= offset < size");
        }

        this.size = size;
        this.offset = offset;
    }

最新版源码:

protected TumblingEventTimeWindows(long size, long offset) {
        if (Math.abs(offset) >= size) {
            throw new IllegalArgumentException("TumblingEventTimeWindows parameters must satisfy abs(offset) < size");
        }

        this.size = size;
        this.offset = offset;
    }

修改:

技术分享图片

    

Flink统计当日的UV、PV

原文:https://www.cnblogs.com/Springmoon-venn/p/10919648.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!