首页 > 其他 > 详细

[实变函数]5.5 Riemann 积分和 Lebesgue 积分

时间:2014-02-15 01:07:54      阅读:334      评论:0      收藏:0      [点我收藏+]

1 记号: 一元函数 ffbubuko.com,布布扣 [a,b][a,b]bubuko.com,布布扣 上的

(1)Riemann 积分: \dps{(R)\int_a^b f(x)\rd x}(R)bubuko.com,布布扣bbubuko.com,布布扣abubuko.com,布布扣f(x)dxbubuko.com,布布扣 ;

(2)Lebesgue 积分: \dps{(L)\int_{[a,b]}f(x)\rd x}(L)bubuko.com,布布扣[a,b]bubuko.com,布布扣f(x)dxbubuko.com,布布扣 .

 

2回忆

(1)Riemann 积分: 对函数 f:[a,b]\to \bbRf:[a,b]Rbubuko.com,布布扣 [a,b][a,b]bubuko.com,布布扣 的任一分划 \bex T:\ a=x_0<x_1<\cdots<x_n=b,\quad\sex{\mbox{细度 }\sen{T}=\max_i\lap x_i}, \eex

T: a=xbubuko.com,布布扣0bubuko.com,布布扣<xbubuko.com,布布扣1bubuko.com,布布扣<?<xbubuko.com,布布扣nbubuko.com,布布扣=b,(细度 T=maxbubuko.com,布布扣ibubuko.com,布布扣xbubuko.com,布布扣ibubuko.com,布布扣),bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
定义 Darboux 上、下和: \beex \bea U_{f,T}=\sum_{i=1}^n M_i\lap x_i,& M_i=\sup_{[x_{i-1},x_i]}f,\\ L_{f,T}=\sum_{i=1}^n m_i\lap x_i,& m_i=\inf_{[x_{i-1},x_i]}f, \eea \eeex
Ububuko.com,布布扣f,Tbubuko.com,布布扣=bubuko.com,布布扣i=1bubuko.com,布布扣nbubuko.com,布布扣Mbubuko.com,布布扣ibubuko.com,布布扣xbubuko.com,布布扣ibubuko.com,布布扣,bubuko.com,布布扣Lbubuko.com,布布扣f,Tbubuko.com,布布扣=bubuko.com,布布扣i=1bubuko.com,布布扣nbubuko.com,布布扣mbubuko.com,布布扣ibubuko.com,布布扣xbubuko.com,布布扣ibubuko.com,布布扣,bubuko.com,布布扣bubuko.com,布布扣Mbubuko.com,布布扣ibubuko.com,布布扣=supbubuko.com,布布扣[xbubuko.com,布布扣i?1bubuko.com,布布扣,xbubuko.com,布布扣ibubuko.com,布布扣]bubuko.com,布布扣f,bubuko.com,布布扣mbubuko.com,布布扣ibubuko.com,布布扣=infbubuko.com,布布扣[xbubuko.com,布布扣i?1bubuko.com,布布扣,xbubuko.com,布布扣ibubuko.com,布布扣]bubuko.com,布布扣f,bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
而显然有 \beex \bea T\subset T‘&\ra U_{f,T}\geq U_{f,T‘},\quad L_{f,T}\leq L_{f,T‘};\\ T,T‘\ra L_{f,T}\leq U_{f,T‘}. \eea \eeex
T?Tbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣T,Tbubuko.com,布布扣bubuko.com,布布扣?Lbubuko.com,布布扣f,Tbubuko.com,布布扣Ububuko.com,布布扣f,Tbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣.bubuko.com,布布扣bubuko.com,布布扣?Ububuko.com,布布扣f,Tbubuko.com,布布扣Ububuko.com,布布扣f,Tbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣,Lbubuko.com,布布扣f,Tbubuko.com,布布扣Lbubuko.com,布布扣f,Tbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣;bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
再定义 Darboux 上、下积分: \bex \overset{-}{\int_a^b} f(x)\rd x=\inf_T U_{f,T},\quad \underset{-}{\int_a^b}f(x)\rd x=\sup_T L_{f,T}. \eex
bubuko.com,布布扣bbubuko.com,布布扣abubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣f(x)dx=infbubuko.com,布布扣Tbubuko.com,布布扣Ububuko.com,布布扣f,Tbubuko.com,布布扣,bubuko.com,布布扣bbubuko.com,布布扣abubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣f(x)dx=supbubuko.com,布布扣Tbubuko.com,布布扣Lbubuko.com,布布扣f,Tbubuko.com,布布扣.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
而显然有 \bex \overset{-}{\int_a^b} f(x)\rd x\geq \underset{-}{\int_a^b}f(x)\rd x. \eex
bubuko.com,布布扣bbubuko.com,布布扣abubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣f(x)dxbubuko.com,布布扣bbubuko.com,布布扣abubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣f(x)dx.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
最后定义 \beex \bea f\in R[a,b]&\lra \overset{-}{\int_a^b} f(x)\rd x\geq \underset{-}{\int_a^b}f(x)\rd x\\ &\lra \exists\ T^{(n)}_1,T^{(n)}_2: \sen{T^{(n)}_1},\sen{T^{(n)}_2}\to 0,\st\\ &\quad \quad U_{f,T^{(n)}_1}\searrow I,\ L_{f,T^{(n)}_2}\nearrow I\quad\sex{I=\int_a^b f(x)\rd x}\\ &\lra \exists\ T^{(n)}=T^{(n)}_1\cup T^{(n)}_2:\ \sen{T^{(n)}}\to 0,\st\\ &\quad\quad \lim_{n\to\infty}\sez{U_{f,T^{(n)}}-L_{f,T^{(n)}}}=0\\ &\lra \exists\ T^{(n)}:\ 0=x^{(n)}_0<x^{(n)}_1<\cdots<x^{(n)}_{P_n}: \sen{T^{(n)}}\to 0,\st\\ &\quad\quad \lim_{n\to\infty}\sum_{i=1}^{P_n}\sez{M^{(n)}_i-m^{(n)}_i}\lap x_i=0. \eea \eeex
fR[a,b]bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣bbubuko.com,布布扣abubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣f(x)dxbubuko.com,布布扣bbubuko.com,布布扣abubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣f(x)dxbubuko.com,布布扣?? Tbubuko.com,布布扣(n)bubuko.com,布布扣1bubuko.com,布布扣,Tbubuko.com,布布扣(n)bubuko.com,布布扣2bubuko.com,布布扣:bubuko.com,布布扣bubuko.com,布布扣Tbubuko.com,布布扣(n)bubuko.com,布布扣1bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣,bubuko.com,布布扣bubuko.com,布布扣Tbubuko.com,布布扣(n)bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣0,s.t. bubuko.com,布布扣Ububuko.com,布布扣f,Tbubuko.com,布布扣(n)bubuko.com,布布扣1bubuko.com,布布扣bubuko.com,布布扣I, Lbubuko.com,布布扣f,Tbubuko.com,布布扣(n)bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣I(I=bubuko.com,布布扣bbubuko.com,布布扣abubuko.com,布布扣f(x)dx)bubuko.com,布布扣?? Tbubuko.com,布布扣(n)bubuko.com,布布扣=Tbubuko.com,布布扣(n)bubuko.com,布布扣1bubuko.com,布布扣Tbubuko.com,布布扣(n)bubuko.com,布布扣2bubuko.com,布布扣: bubuko.com,布布扣bubuko.com,布布扣Tbubuko.com,布布扣(n)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣0,s.t. bubuko.com,布布扣limbubuko.com,布布扣nbubuko.com,布布扣[Ububuko.com,布布扣f,Tbubuko.com,布布扣(n)bubuko.com,布布扣bubuko.com,布布扣?Lbubuko.com,布布扣f,Tbubuko.com,布布扣(n)bubuko.com,布布扣bubuko.com,布布扣]=0bubuko.com,布布扣?? Tbubuko.com,布布扣(n)bubuko.com,布布扣: 0=xbubuko.com,布布扣(n)bubuko.com,布布扣0bubuko.com,布布扣<xbubuko.com,布布扣(n)bubuko.com,布布扣1bubuko.com,布布扣<?<xbubuko.com,布布扣(n)bubuko.com,布布扣Pbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣:bubuko.com,布布扣bubuko.com,布布扣Tbubuko.com,布布扣(n)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣0,s.t. bubuko.com,布布扣limbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣i=1bubuko.com,布布扣Pbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣[Mbubuko.com,布布扣(n)bubuko.com,布布扣ibubuko.com,布布扣?mbubuko.com,布布扣(n)bubuko.com,布布扣ibubuko.com,布布扣]xbubuko.com,布布扣ibubuko.com,布布扣=0.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
注意: \bex E=\cup_{n=1}^\infty T^{(n)}=\cup_{n=1}^\infty \sed{x^{(n)}_0,x^{(n)}_1,\cdots,x^{(n)}_{P_n}} \eex
E=bubuko.com,布布扣bubuko.com,布布扣n=1bubuko.com,布布扣Tbubuko.com,布布扣(n)bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣n=1bubuko.com,布布扣{xbubuko.com,布布扣(n)bubuko.com,布布扣0bubuko.com,布布扣,xbubuko.com,布布扣(n)bubuko.com,布布扣1bubuko.com,布布扣,?,xbubuko.com,布布扣(n)bubuko.com,布布扣Pbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣}bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
可数, 而是零测度集. 连续函数的刻画: \bex f\mbox{ 在 }x\mbox{ 处连续}\lra \omega(x)=\lim_{\delta\to }\sup_{x‘,x‘‘\in U(x,\delta)\cap [a,b]}|f(x‘)-f(x‘‘)|=0. \eex
f  x 处连续?ω(x)=limbubuko.com,布布扣δbubuko.com,布布扣supbubuko.com,布布扣xbubuko.com,布布扣bubuko.com,布布扣,xbubuko.com,布布扣′′bubuko.com,布布扣U(x,δ)[a,b]bubuko.com,布布扣|f(xbubuko.com,布布扣bubuko.com,布布扣)?f(xbubuko.com,布布扣′′bubuko.com,布布扣)|=0.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
证明: \beex \bea f\mbox{ 在 }x\mbox{ 处连续} &\ra\forall\ \ve>0,\ \exists\ \delta>0,\ \forall\ x‘\in U(x,\delta)\cap [a,b],\\ &\quad\mbox{ 有 }|f(x‘)-f(x)|<\ve/2\\ &\ra \forall\ \ve>0,\ \exists\ \delta>0,\ \forall\ x‘,x‘‘\in U(x,\delta)\cap [a,b],\\ &\quad\mbox{ 有 }|f(x‘)-f(x‘‘)|<\ve. \eea \eeex
f  x 处连续bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?? ε>0, ? δ>0, ? xbubuko.com,布布扣bubuko.com,布布扣U(x,δ)[a,b],bubuko.com,布布扣  |f(xbubuko.com,布布扣bubuko.com,布布扣)?f(x)|<ε/2bubuko.com,布布扣?? ε>0, ? δ>0, ? xbubuko.com,布布扣bubuko.com,布布扣,xbubuko.com,布布扣′′bubuko.com,布布扣U(x,δ)[a,b],bubuko.com,布布扣  |f(xbubuko.com,布布扣bubuko.com,布布扣)?f(xbubuko.com,布布扣′′bubuko.com,布布扣)|<ε.bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
\beex \bea \omega(x)=0&\ra \forall\ \ve>0,\exists\ \delta>0,\ \sup_{x‘,x‘‘\in U(x,\delta)\cap [a,b]}|f(x‘)-f(x‘‘)|<\ve\\ &\ra \forall\ \ve>0,\exists\ \delta>0,\ \sup_{x‘\in U(x,\delta)\cap [a,b]}|f(x‘)-f(x)|<\ve\quad\sex{x‘‘=x}. \eea \eeex
ω(x)=0bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?? ε>0,? δ>0, supbubuko.com,布布扣xbubuko.com,布布扣bubuko.com,布布扣,xbubuko.com,布布扣′′bubuko.com,布布扣U(x,δ)[a,b]bubuko.com,布布扣|f(xbubuko.com,布布扣bubuko.com,布布扣)?f(xbubuko.com,布布扣′′bubuko.com,布布扣)|<εbubuko.com,布布扣?? ε>0,? δ>0, supbubuko.com,布布扣xbubuko.com,布布扣bubuko.com,布布扣U(x,δ)[a,b]bubuko.com,布布扣|f(xbubuko.com,布布扣bubuko.com,布布扣)?f(x)|<ε(xbubuko.com,布布扣′′bubuko.com,布布扣=x).bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
(2) Riemann 可积函数的刻画: 设 f:[a,b]\to \bbRf:[a,b]Rbubuko.com,布布扣 有界, 则 \bex f\in R[a,b]\lra f\ae \mbox{ 连续, 于 }[a,b]. \eex
fR[a,b]?fa.e.  连续,  [a,b].bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
证明: 注意到 \bex f\in R[a,b]\lra \exists\ T^{(n)}:\sen{T^{(n)}}\to 0,\st \lim_{n\to\infty} \sum_{i=1}^{P_n} [M^{(n)}_i-m^{(n)}_i]\lap x_i=0 \eex
fR[a,b]?? Tbubuko.com,布布扣(n)bubuko.com,布布扣:bubuko.com,布布扣bubuko.com,布布扣Tbubuko.com,布布扣(n)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣0,s.t. limbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣i=1bubuko.com,布布扣Pbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣[Mbubuko.com,布布扣(n)bubuko.com,布布扣ibubuko.com,布布扣?mbubuko.com,布布扣(n)bubuko.com,布布扣ibubuko.com,布布扣]xbubuko.com,布布扣ibubuko.com,布布扣bubuko.com,布布扣=0bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
及\footnote{为证 h_n(x)\to \omega(x),x\in [a,b]\bs Ehbubuko.com,布布扣nbubuko.com,布布扣(x)ω(x),x[a,b]?Ebubuko.com,布布扣 , 仅须注意到 \sen{T^{(n)}}\to 0bubuko.com,布布扣bubuko.com,布布扣Tbubuko.com,布布扣(n)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣0bubuko.com,布布扣 \beex \bea \omega(x)&=\lim_{n\to\infty} \sup_{x^{(n)}_{i_n-1}<x‘,x‘‘<x^{(n)}_{i_n}}|f(x‘)-f(x‘‘)|\quad\sex{\mbox{不在乎是否为中央开区间}}\\ &=\lim_{n\to\infty}[M^{(n)}_{i_n}-m^{(n)}_{i_n}]. \eea \eeex
ω(x)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=limbubuko.com,布布扣nbubuko.com,布布扣supbubuko.com,布布扣xbubuko.com,布布扣(n)bubuko.com,布布扣ibubuko.com,布布扣nbubuko.com,布布扣?1bubuko.com,布布扣<xbubuko.com,布布扣bubuko.com,布布扣,xbubuko.com,布布扣′′bubuko.com,布布扣<xbubuko.com,布布扣(n)bubuko.com,布布扣ibubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣|f(xbubuko.com,布布扣bubuko.com,布布扣)?f(xbubuko.com,布布扣′′bubuko.com,布布扣)|(不在乎是否为中央开区间)bubuko.com,布布扣=limbubuko.com,布布扣nbubuko.com,布布扣[Mbubuko.com,布布扣(n)bubuko.com,布布扣ibubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣?mbubuko.com,布布扣(n)bubuko.com,布布扣ibubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣].bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
} \beex \bea \lim_{n\to\infty} \sum_{i=1}^{P_n} [M^{(n)}_i-m^{(n)}_i]\lap x_i &=\lim_{n\to\infty} (L)\int_{[a,b]}h_n(x)\rd x\\ &\quad\sex{h_n(x)=\sedd{\ba{ll} M^{(n)}_i-m^{(n)}_i,&x^{(n)}_{i-1}<x<x^{(n)}_i\\ 0,x\not\in T^{(n)} \ea}}\\ &=\int_{[a,b]}\lim_{n\to\infty}h_n(x)\rd x\quad\sex{\mbox{Lebesgue 控制收敛}}\\ &=\int_{[a,b]}\omega(x)\rd x\quad\sex{h_n(x)\to \omega(x),x\in [a,b]\bs E}. \eea \eeex
limbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣i=1bubuko.com,布布扣Pbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣[Mbubuko.com,布布扣(n)bubuko.com,布布扣ibubuko.com,布布扣?mbubuko.com,布布扣(n)bubuko.com,布布扣ibubuko.com,布布扣]xbubuko.com,布布扣ibubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=limbubuko.com,布布扣nbubuko.com,布布扣(L)bubuko.com,布布扣[a,b]bubuko.com,布布扣hbubuko.com,布布扣nbubuko.com,布布扣(x)dxbubuko.com,布布扣(hbubuko.com,布布扣nbubuko.com,布布扣(x)={Mbubuko.com,布布扣(n)bubuko.com,布布扣ibubuko.com,布布扣?mbubuko.com,布布扣(n)bubuko.com,布布扣ibubuko.com,布布扣,bubuko.com,布布扣0,x?Tbubuko.com,布布扣(n)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣xbubuko.com,布布扣(n)bubuko.com,布布扣i?1bubuko.com,布布扣<x<xbubuko.com,布布扣(n)bubuko.com,布布扣ibubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣)bubuko.com,布布扣=bubuko.com,布布扣[a,b]bubuko.com,布布扣limbubuko.com,布布扣nbubuko.com,布布扣hbubuko.com,布布扣nbubuko.com,布布扣(x)dx(Lebesgue 控制收敛)bubuko.com,布布扣=bubuko.com,布布扣[a,b]bubuko.com,布布扣ω(x)dx(hbubuko.com,布布扣nbubuko.com,布布扣(x)ω(x),x[a,b]?E).bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
我们有 \beex \bea f\in R[a,b]&\ra \int_{[a,b]}\omega(x)\rd x=0\\ &\lra \omega=0,\ae\\ &\lra f\ae\mbox{ 连续}. \eea \eeex
3 Lebesgue 积分是 Riemann 积分的推广: 设 f:[a,b]\to \bbR \footnote{f\in R[a,b]\ra f 有界.}, 则 \bex f\in R[a,b]\ra f\in L[a,b],\mbox{ 且 } (L)\int_{[a,b]}f(x)\rd x =(R)\int_a^b f(x)\rd x. \eex
证明: \beex \bea f\in R[a,b]&\ra f\ae\mbox{ 连续}\\ &\ra f\in L[a,b];\\ f\in R[a,b]&\ra \exists\ T^{(n)}:\sen{T^{(n)}}\to 0,\st \lim_{n\to\infty} \sum_{i=1}^{P_n} [M^{(n)}_i-m^{(n)}_i]\lap x_i=0\\ &\ra (R)\int_a^b f(x)\rd x =\lim_{n\to\infty} \sum_{i=1}^{P_n} M^{(n)}_i\lap x_i\\ &\qquad\qquad \qquad \qquad =\lim_{n\to\infty}(L) \int_{[a,b]}g_n(x)\rd x\\ &\qquad\qquad \qquad \qquad \quad\sex{g_n(x)=\sedd{\ba{ll} M^{(n)}_i,&x^{(n)}_{i-1}<x<x^{(n)}_i\\ 0,&x\not\in T^{(n)} \ea}}\\ &\qquad\qquad \qquad \qquad =(L) \int_a^b \lim_{n\to\infty}g_n(x)\rd x\\ &\qquad\qquad \qquad \qquad =(L)\int_a^b f(x)\rd x. \eea \eeex
4 Lebesgue 积分是非负 Riemann 反常积分的推广: \bex \serd{\ba{ll} f:[a,+\infty)\to [0,+\infty)\\ f\in R[a,A],\quad \forall\ A>a\\ (R)\int_a^{+\infty}f(x)\rd x\mbox{ 收敛} \ea}\ra\sedd{\ba{ll} f\in L[a,b]\\ (L)\int_{[a,+\infty)}f(x)\rd x =(R)\int_a^{+\infty}f(x)\rd x. \ea} \eex
证明: \beex \bea (L)\int_{[a,+\infty)}f(x)\rd x &=(L)\int_{[a,+\infty)} \lim_{i\to\infty}f_i(x)\rd x\quad\sex{f_i(x)=\sedd{\ba{ll} f(x),&0\leq x\leq i\\ 0,&x>i \ea}}\\ &=(L)\lim_{i\to\infty}\int_{[a,+\infty)}f_i(x)\rd x\\ &=(L)\lim_{i\to\infty}\int_{[a,i]}f(x)\rd x\\ &=(R)\lim_{i\to\infty}\int_a^if(x)\rd x\\ &=(R)\int_a^{+\infty}f(x)\rd x. \eea \eeex
5 Lebesgue 积分不是 Riemann 反常积分的推广: \bex f(x)=\sedd{\ba{ll} \frac{\sin x}{x},&x\in (0,+\infty)\\ 1,x=0 \ea}\ra f\in R[0,+\infty),\ f\not\in L[0,+\infty). \eex
证明: 由 Dirichlet 判别法即知 f\in R[0,+\infty) . 往证 \bex \int_0^\infty f^\pm(x)\rd x=+\infty\ra f\mbox{ 积分不确定}\ra f\not\in L[0,+\infty): \eex
\beex \bea (L)\int_{[0,+\infty)}f^+(x)\rd x &=(L)\int_{[0,+\infty)} f(x)\sum_{k=0}^\infty f(x)\sum_{k=0}^\infty \chi_{[2k\pi,(2k+1)\pi]}(x)\rd x\\ &=\sum_{k=0}^\infty (L)\int_{[2k\pi,(2k+1)\pi]}\frac{\sin x}{x}\rd x\\ &=\sum_{k=0}^\infty (R)\int_{2k\pi}^{(2k+1)\pi}\frac{\sin x}{x}\rd x\\ &\geq \sum_{k=0}^\infty \frac{2}{(2k+1)\pi}\quad\sex{\mbox{把 }x\mbox{ 提出来}}\\ &=+\infty;\\ (L)\int_{[0,+\infty)}f^-(x)\rd x&=+\infty. \eea \eeex
6作业: Page 132, T 5.

[实变函数]5.5 Riemann 积分和 Lebesgue 积分

原文:http://www.cnblogs.com/zhangzujin/p/3549223.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!