代码函数详解
tf.random.truncated_normal()函数
tf.truncated_normal函数随机生成正态分布的数据,生成的数据是截断的正态分布,截断的标准是2倍的stddev。
zip()函数
zip() 函数用于将可迭代对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的对象。如果各个可迭代对象的元素个数不一致,则返回的对象长度与最短的可迭代对象相同。利用 * 号操作符,与zip相反,进行解压。
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt train_x = np.linspace(-5, 3, 50) train_y = train_x * 5 + 10 + np.random.random(50) * 10 - 5 plt.plot(train_x, train_y, ‘r.‘) plt.grid(True) plt.show() X = tf.placeholder(dtype=tf.float32) Y = tf.placeholder(dtype=tf.float32) w = tf.Variable(tf.random.truncated_normal([1]), name=‘Weight‘) b = tf.Variable(tf.random.truncated_normal([1]), name=‘bias‘) z = tf.multiply(X, w) + b cost = tf.reduce_mean(tf.square(Y - z)) learning_rate = 0.01 optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) init = tf.global_variables_initializer() training_epochs = 20 display_step = 2 with tf.Session() as sess: sess.run(init) loss_list = [] for epoch in range(training_epochs): for (x, y) in zip(train_x, train_y): sess.run(optimizer,feed_dict={X:x, Y:y}) if epoch % display_step == 0: loss = sess.run(cost, feed_dict={X:x, Y:y}) loss_list.append(loss) print(‘Iter: ‘, epoch, ‘ Loss: ‘, loss) w_, b_ = sess.run([w, b], feed_dict={X: x, Y: y}) print(" Finished ") print("W: ", w_, " b: ", b_, " loss: ", loss) plt.plot(train_x, train_x*w_ + b_, ‘g-‘, train_x, train_y, ‘r.‘) plt.grid(True) plt.show()
TensorFlow——LinearRegression简单模型代码
原文:https://www.cnblogs.com/baby-lily/p/10923888.html