首页 > 其他 > 详细

spark的安装和配置

时间:2019-05-27 14:23:17      阅读:86      评论:0      收藏:0      [点我收藏+]

配置local单机模式(spark1中,解压即可用)

    1.上传至linux(以spark-1.6.1-bin-hadoop2.6.tgz为例)

    2.解压jar 包

        [root@spark1 soft]# tar -zxvf spark-1.6.1-bin-hadoop2.6.tgz

    3.测试

   [root@spark1 spark-1.6.1]# ./bin/spark-submit -class org.apache.spark.examples.SparkPi --master local[1] ./lib/spark-examples-1.6.1-hadoop2.6.0.jar 100

         其中SparkPi:指定运行程序(计算π的值),master:指定模式,local为本地模式,[1]表示一个线程,100表示传递的参数

         最后得到的结果形如:Pi is roughly 3.1425304

二、配置standalone集群模式(spark内置的主从,master,worker)

    1.上传至linux(spark1,spark2,spark3)

    2.解压jar 包

        [root@spark1 soft]# tar -zxvf spark-1.6.1-bin-hadoop2.6.tgz

    3.修改配置文件(配置三个节点)

        [root@spark1 conf]# cp slaves.template slaves

        [root@spark1 conf]# vi slaves(配置运行worker的机器)

        添加如下内容:

                --------------------------------------------------
                spark2
                spark3

                --------------------------------------------------  

         这样使spark1只运行cluster

        [root@spark1 conf]# cp spark-env.sh.template spark-env.sh

        [root@spark1 conf]# vi spark-env.sh

        添加如下内容:

                --------------------------------------------------

                export JAVA_HOME=/opt/soft/jdk1.8.0_11
                export SPARK_MASTER_IP=spark1
                export SPARK_MASTER_PORT=7077
                export SPARK_WORKER_CORES=2
                export SPARK_WORKER_INSTANCES=1

                export SPARK_WORKER_MEMORY=1g

                注: 配置master高可用:在master节点上配置,每启动一个master都会向zk传递数据

                       记得配置master节点对其他节点的免密码登录,另外修改export SPARK_MASTER_IP

                       为对应所需的主节点,再启动sbin/start-master.sh(下面内容在该配置文件中配置,不配置高可用则不需添加)

 export SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER -Dspark.deploy.zookeeper.url=192.168.13.135:2181,192.168.13.136:2181,192.168.13.137:2181"
-

    4.运行

        [root@spark1 spark-1.6.1]# ./sbin/start-all.sh

    5.测试

    1)client模式

  [root@spark1 spark-1.6.1]# ./bin/spark-submit --class org.apache.spark.examples.SparkPi --master spark://spark1:7077 --executor-memory 1G --total-executor-cores 1 ./lib/spark-examples-1.6.1-hadoop2.6.0.jar 100

           其中--master spark指定standlone模式
    2)cluster模式(结果spark1:8080里面可见!)
  [root@spark1 spark-1.6.1]#./bin/spark-submit --class org.apache.spark.examples.SparkPi --master spark://spark1:7077 --deploy-mode cluster --supervise --executor-memory 1G --total-executor-cores 1 ./lib/spark-examples-1.6.1-hadoop2.6.0.jar 100

            注:如果内存不够时可以将1G改下,如512M

三、配置yarn集群模式

    1.yarn模式不需要运行standalone模式,关闭
        [root@spark1 spark-1.6.1]# ./sbin/stop-all.sh
    2.上传linux(spark1,spark2,spark3)
    3.解压jar包
    4.修改配置文件(spark-env.sh)

    export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
    export YARN_CONF_DIR=$HADOOP_HOME/etc/hadoop
    export SPARK_HOME=/opt/soft/spark-1.6.1
    export SPARK_JAR=/opt/soft/spark-1.6.1/lib/spark-assembly-1.6.1-hadoop2.6.0.jar
    export PATH=$SPARK_HOME/bin:$PATH
  
    其中HADOOP_HOME必须在环境变量中已配好
    5.测试
    首先启动zookeeper、hdfs和yarn
    1)client模式
    [root@spark1 spark-1.6.1]#./bin/spark-submit --class org.apache.spark.examples.SparkPi --master yarn-client --executor-memory 1G --num-executors 1 ./lib/spark-examples-1.6.1-hadoop2.6.0.jar 100
    2)cluster模式:(结果spark1:8088里面可见)
    [root@spark1 spark-1.6.1]#./bin/spark-submit --class org.apache.spark.examples.SparkPi --master yarn-cluster --executor-memory 1G --num-executors 1 ./lib/spark-examples-1.6.1-hadoop2.6.0.jar 100

spark的安装和配置

原文:https://www.cnblogs.com/ynnd/p/10930188.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!