首页 > 其他 > 详细

测试一下markdown编辑器

时间:2019-05-28 17:20:19      阅读:195      评论:0      收藏:0      [点我收藏+]

第一章

$f(x)=\frac{1}{\sqrt{2 \pi \sigma x}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$

$alpfa$

/*
 * (C) Copyright 2017-2019 OpenVidu (https://openvidu.io/)
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 */

import { OpenVidu } from './OpenVidu';
import { Session } from './Session';
import { Stream } from './Stream';
import { StreamManager } from './StreamManager';
import { EventDispatcher } from '../OpenViduInternal/Interfaces/Public/EventDispatcher';
import { PublisherProperties } from '../OpenViduInternal/Interfaces/Public/PublisherProperties';
import { Event } from '../OpenViduInternal/Events/Event';
import { StreamEvent } from '../OpenViduInternal/Events/StreamEvent';
import { StreamPropertyChangedEvent } from '../OpenViduInternal/Events/StreamPropertyChangedEvent';
import { VideoElementEvent } from '../OpenViduInternal/Events/VideoElementEvent';
import { OpenViduError, OpenViduErrorName } from '../OpenViduInternal/Enums/OpenViduError';
import { VideoInsertMode } from '../OpenViduInternal/Enums/VideoInsertMode';

import platform = require('platform');
platform['isIonicIos'] = (platform.product === 'iPhone' || platform.product === 'iPad') && platform.ua!!.indexOf('Safari') === -1;

/**
 * Packs local media streams. Participants can publish it to a session. Initialized with [[OpenVidu.initPublisher]] method
 */
export class Publisher extends StreamManager {

    /**
     * Whether the Publisher has been granted access to the requested input devices or not
     */
    accessAllowed = false;

    /**
     * Whether you have called [[Publisher.subscribeToRemote]] with value `true` or `false` (*false* by default)
     */
    isSubscribedToRemote = false;

    /**
     * The [[Session]] to which the Publisher belongs
     */
    session: Session; // Initialized by Session.publish(Publisher)

    private accessDenied = false;
    private properties: PublisherProperties;
    private permissionDialogTimeout: NodeJS.Timer;

    /**
     * @hidden
     */
    openvidu: OpenVidu;
    /**
     * @hidden
     */
    videoReference: HTMLVideoElement;
    /**
     * @hidden
     */
    screenShareResizeInterval: NodeJS.Timer;

    /**
     * @hidden
     */
    constructor(targEl: string | HTMLElement, properties: PublisherProperties, openvidu: OpenVidu) {
        super(new Stream((!!openvidu.session) ? openvidu.session : new Session(openvidu), { publisherProperties: properties, mediaConstraints: {} }), targEl);
        this.properties = properties;
        this.openvidu = openvidu;

        this.stream.ee.on('local-stream-destroyed', (reason: string) => {
            this.stream.isLocalStreamPublished = false;
            const streamEvent = new StreamEvent(true, this, 'streamDestroyed', this.stream, reason);
            this.emitEvent('streamDestroyed', [streamEvent]);
            streamEvent.callDefaultBehavior();
        });
    }

    private clearPermissionDialogTimer(startTime: number, waitTime: number): void {
        clearTimeout(this.permissionDialogTimeout);
        if ((Date.now() - startTime) > waitTime) {
            // Permission dialog was shown and now is closed
            this.emitEvent('accessDialogClosed', []);
        }
    }

}

技术分享图片

绪论

$f(x)=\frac{1}{\sqrt{2 \pi \sigma x}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$

$f(x)=\frac{1}{\sqrt{2 \pi \sigma x}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$

这是什么牙啊

$f(x)=\frac{1}{\sqrt{2 \pi \sigma x}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$

$f(x)=\frac{1}{\sqrt{2 \pi \sigma x}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$

$|x+y| \leqslant|x|+|y|$

测试一下markdown编辑器

原文:https://www.cnblogs.com/yasepix/p/10938649.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!