?由于\(DTFT\)变换是有收敛条件的,并且其收敛条件比较严格,很多信号不能够满足条件,为了有效的分析信号,需要放宽收敛的条件,引入\(Z\)变换。
已知序列的\(DTFT\)为
\[
X(e^{jw})=\sum_{n=-\infty}^{\infty}x[n]e^{-jwn}
\]
当序列\(x[n]\)不满足收敛条件时,我们让\(x[n]\)乘以\(r^{-n}\)使它收敛
\[
\sum_{n=-\infty}^{\infty}x[n]r^{-n}e^{-jwn}
\]
令\(z=re^{jw}\)得到
\[
X(z)=\sum_{n=-\infty}^{\infty}x[n]z^{-n}
\]
对于所有的\(z\)上式不一定收敛,所以\(Z\)变换是有其收敛域,所以在对一个信号进行\(Z\)变换时,一定要加上它的收敛域,因为对于一些不同的信号,它们的\(Z\)变换相同,但是它们的收敛域不同。仅仅由\(Z\)变换的表达式并不能完全的确定原信号,要加上它的收敛域才能完全的确定原信号。
例:求序列\(x[n]=\alpha^n\mu[n]\)的\(Z\)变换。
解:
\[
X(z)=\sum_{n=0}^{\infty}\alpha^nz^{-n}=\frac{1}{1-\alpha z^{-1}}
\]
要使上式收敛,则必须满足\(\vert\alpha z^{-1}\vert<1\),即收敛域为\(\vert z\vert>\vert \alpha\vert\)。
所以序列\(x[n]=\alpha^n\mu[n]\)的\(Z\)变换为
\[
X(z)=\frac{1}{1-\alpha z^{-1}},\vert z\vert>\vert \alpha\vert
\]
例:求序列\(x[n]=-\alpha^n\mu[-n-1]\)的\(Z\)变换。
解:
\[
X(z)=\sum_{n=-\infty}^{-1}-\alpha^nz^{-n}=-\sum_{m=1}^{\infty}(\alpha^{-1}z)^{m}=-\frac{\alpha^{-1}z}{1-\alpha^{-1}z}=\frac{1}{1-\alpha z^{-1}}
\]
要使上式收敛,则需要满足\(\vert\alpha^{-1}z\vert<1\),即收敛域为\(\vert z\vert < \vert \alpha \vert\)
所以序列\(x[n]=-\alpha^n\mu[-n-1]\)的\(Z\)变换为
\[
X(z)=\frac{1}{1-\alpha z^{-1}},\vert z\vert < \vert \alpha \vert
\]
由上面两例可知,序列\(x[n]=\alpha^n\mu[n]\)的\(Z\)变换的表达式与序列\(x[n]=-\alpha^n\mu[-n-1]\)的\(Z\)变换的表达式是一样的,但是它们的收敛域是完全不一样的,如果只给出其\(Z\)变换的表达式,是不能判断其原信号是什么的。
设序列\(x[n]\)的\(Z\)变换为\(X(z)\),其收敛域为\(R_{x-}<\vert z\vert <R_{x+}\),序列\(w[n]\)的\(Z\)变换为\(W(z)\),其收敛域为\(R_{w-}<\vert z\vert <R_{w+}\)。
设\(y[n]=\alpha x[n]+\beta w[n]\),则其\(Z\)变换为
\[
\begin{aligned}
Y(z)&=\sum_{n=-\infty}^{\infty}(\alpha x[n]+\beta w[n])z^{-n}\&=\alpha\sum_{n=-\infty}^{\infty}x[n]z^{-n}+\beta\sum_{n=-\infty}^{\infty}w[n]z^{-n}\&=\alpha X(z)+\beta W(z)
\end{aligned}
\]
其收敛域为\[max\{R_{x-},R_{w-}\}<\vert z\vert <min\{R_{x+},R_{w+}\}\]
序列\(y[n]=x[n-n_0]\)的\(Z\)变换为
\[
\begin{aligned}
Y(z)&=\sum_{n=-\infty}^{\infty}x[n-n_0]z^{-n}\&\xrightarrow{m=n-n_0}z^{-n_0}\sum_{m=-\infty}^{\infty}x[m]z^{-m}\&=z^{-n_0}X(z)
\end{aligned}
\]
除了其收敛域可能包含\(0\)或者\(\infty\),与原收敛域相同。
序列\(y[n]=\alpha^nx[n]\)的\(Z\)变换为
\[
\begin{aligned}
Y(z)&=\sum_{n=-\infty}^{\infty}\alpha^nx[n]z^{-n}\&=\sum_{n=-\infty}^{\infty}x[n](z\alpha^{-1})^{-n}\&=X(\frac{z}{\alpha})
\end{aligned}
\]
其收敛域为\(\vert \alpha \vert R_{x-}< \vert z\vert < \vert \alpha \vert R_{x+}\)
序列\(y[n]=x[-n]\)的\(Z\)变换为
\[
\begin{aligned}
Y(z)&=\sum_{n=-\infty}^{\infty}x[-n]z^{-n}\&\xrightarrow{m=-n}\sum_{m=-\infty}^{\infty}x[m](\frac{1}{z})^{-n}\&=X(\frac{1}{z})
\end{aligned}
\]
其收敛域为\(\cfrac{1}{R_{x+}}<\vert z\vert < \cfrac{1}{R_{x-}}\)
序列\(y[n]=x^{*}[n]\)的\(Z\)变换为
\[
\begin{aligned}
Y(z)&=\sum_{n=-\infty}^{\infty}x^{*}[n]z^{-n}\&=(\sum_{n=-\infty}^{\infty}x[n](z^{*})^{-n})^{*}\&=X^{*}(z^{*})
\end{aligned}
\]
其收敛域未发生改变,因为\(\vert z\vert = \vert z^{*}\vert\)
由于
\[
X(z)=\sum_{n=-\infty}^{\infty}x[n]z^{-n}
\]
所以
\[
\frac{dX(z)}{dz}=-\sum_{n=-\infty}^{\infty}nx[n]z^{-n-1}\Rightarrow-z\frac{dX(z)}{dz}=\sum_{n=-\infty}^{\infty}nx[n]z^{-n}
\]
所以序列\(y[n]=nx[n]\)的\(Z\)变换为
\[
Y(z)=-z\frac{dX(z)}{dz}
\]
其收敛域可能去掉\(0\)或者\(\infty\),其余不变。
序列\(y[n]=x[n]*w[n]\)的\(Z\)变换为
\[
\begin{aligned}
Y(z)&=\sum_{n=-\infty}^{\infty}\sum_{m=-\infty}^{\infty}x[m]w[n-m]z^{-n}\&=\sum_{m=-\infty}^{\infty}x[m]\sum_{n=-\infty}^{\infty}w[n-m]z^{-n}\&\xrightarrow{l=n-m}\sum_{m=-\infty}^{\infty}x[m]z^{-m}\sum_{l=-\infty}^{\infty}w[l]z^{-l}\&=X(z)Y(z)
\end{aligned}
\]
其收敛域为
\[
max\{R_{x-},R_{w-}\}<\vert z\vert <min\{R_{x+},R_{w+}\}
\]
有时\(X(z)\)与\(W(z)\)的零极点可能会互相抵消,所以收敛域可能会比这个大。
原文:https://www.cnblogs.com/LastKnight/p/10958087.html