?现研究一连续信号进行抽样转换为数字信号,经数字信号处理器(DSP
)或计算机处理后,再进行重建的过程,具体过程如下:
其中采样/保持电路和A/D
转换电路可以看做是一个理想抽样的过程,而D/A
转换和平滑录播可以看做是一个理想内插的过程。
假设理想抽样信号为
\[
\sum_{n=-\infty}^{\infty}\delta(t-nT_s)
\]
其中\(T_s\)为抽样的周期。那么模拟信号\(x_a(t)\)经理想抽样后得到的抽样信号\(\hat{x}_a(t)\)为
\[
\hat{x}_a(t)=x_a(t) \cdot \sum_{n=-\infty}^{\infty}\delta(t-nT_s)
\]
设信号\(x_a(t)\)的傅里叶变换为\(X_a(j\Omega)\),并且其最高频率为\(\Omega_m\),现研究抽样信号\(\hat{x}_a(t)\)的傅里叶变换。
\[
\begin{aligned}
\hat{X}_a(j\Omega)=F[\hat{x}_a(t)]&=F[x_a(t) \cdot \sum_{n=-\infty}^{\infty}\delta(t-nT_s)] \&=\frac{1}{2\pi}X(j\Omega)*\frac{2\pi}{T_s}\sum_{n=-\infty}^{\infty}\delta(\Omega - n\Omega_s) \&=\frac{1}{T_s}\sum_{n=-\infty}^{\infty}X(j(\Omega - n\Omega_s))
\end{aligned}
\]
其中\(\Omega_s=\frac{2\pi}{T_s}\)。
从上式中就可以看出抽样信号的频谱是原信号频谱的周期延拓。
要保证频谱在周期延拓时不发生混叠,那么就要求
\[
\Omega_s-\Omega_m\geq\Omega_m \Rightarrow\Omega_s\geq2\Omega_m
\]
把\(\Omega_s=2\Omega_m\)称为奈奎斯特采样频率,这是频谱不发生混叠允许的最小采样频率,此时可以通过一低通滤波器将信号恢复出来,若频谱发生了混叠,则很难将信号重建出来。
考虑信号的重建,由频谱图可知,通过一低通滤波器即可将信号完全的恢复出来,假设以频率\(\Omega_s>2\Omega_m\)进行抽样,考虑这么一个低通滤波器:
其傅里叶反变换为
\[
h_{LP}(t)=sinc(\frac{t}{T_s})
\]
其中\(sinc(t)=\frac{sin(\pi t)}{\pi t}\)
由频谱关系知
\[
X(j\Omega)=\hat{X}_a(j\Omega) \cdot H_{LP}(j\Omega)
\]
所以
\[
\begin{aligned}
x_a(t)&=\hat{x}_a(t) * h_{LP}(t) \&=x_a(t) \cdot \sum_{n=-\infty}^{\infty}\delta(t-nT_s) * h_{LP}(t) \&=\sum_{n=-\infty}^{\infty}x_a(nT_s)\delta(t-nT_s) *sinc(\frac{t}{T_s}) \&=\sum_{n=-\infty}^{\infty}x_a(nT_s)sinc(\frac{1}{T_s}(t-nT_s))
\end{aligned}
\]
这就是信号的重建,这个过程也被称为理想内插过程。
原文:https://www.cnblogs.com/LastKnight/p/10958028.html