已知 \(x,y,z\in\textbf{R}\)且\(x+y+z=1\)
(1)求\((x-1)^2+(y+1)^2+(z+1)^2\)的最小值;
(2)若\((x-2)^2+(y-1)^2+(z-a)^2\geqslant \frac{1}{3}\)成立,证明:\(a\leqslant -3\)或\(a\geqslant -1.\)
法一:权方和
(1)\((x-1)^2+(y+1)^2+(z+1)^2\geqslant \frac{[(x-1)+(y+1)+(z+1)]^2}{1+1+1}=\frac{4}{3}\)
(2)因为\((x-2)^2+(y-1)^2+(z-a)^2\geqslant \frac{[(x-2)+(y-1)+(z-a)]^2}{1+1+1}=\frac{(2+a)^2}{3}\)
所以\(\frac{(2+a)^2}{3}\geqslant\frac{1}{3},\;\;\)故有\(a\leqslant -3\)或\(a\geqslant -1.\)
法二:化归为点到面的距离
(1)点\((1,-1,-1)\)到平面\(x+y+z=1\)的距离\(d=\frac{|1-1-1-1|}{\sqrt{1^2+1^2+1^2}}=\frac{2}{\sqrt{3}},\;\;\)即最小值为\(\frac{4}{3}\)
(2)点\((2,1,a)\)到平面\(x+y+z=1\)的距离\(d=\frac{|2+1+a-1|}{\sqrt{1^2+1^2+1^2}}\geqslant\frac{1}{\sqrt{3}},\;\;\)故有\(a\leqslant -3\)或\(a\geqslant -1.\)
原文:https://www.cnblogs.com/xuebajunlutiji/p/10989056.html