pro:给定平面上N条直线,保证没有直线和Y轴平行。 求有多少交点的X坐标落在(L,R)开区间之间,注意在x=L或者R处的不算。
sol:求出每条直线与L和R的交点,如果A直线和B直线在(L,R)相交,一定有Xa<Xb而且Ya>Yb(或相反);那么即是求逆序对。
#include<bits/stdc++.h> #define rep(i,a,b) for(int i=a;i<=b;i++) #define pdd pair<double,double> #define ll long long using namespace std; const int maxn=10010; struct point{ double x,y; point(){} point(double xx,double yy):x(xx),y(yy){} }s[maxn]; struct line{ point s,p; line(){} line(point xx,point yy):s(xx),p(yy){} }; point operator *(double t,point a){ return point(t*a.x,t*a.y);} point operator -(point w,point v){return point(w.x-v.x,w.y-v.y);} point operator +(point w,point v){return point(w.x+v.x,w.y+v.y);} double det(point w,point v){ return w.x*v.y-w.y*v.x;} double dot(point w,point v){ return w.x*v.x+w.y*v.y;} point inters(line a,line b){ point p=a.s-b.s; double t=det(b.p,p)/det(a.p,b.p); return a.s+t*a.p; } int sum[maxn],b[maxn],N; double L,R,a[maxn]; point A[maxn],B[maxn]; ll ans; line F,C; struct in{ double a,b; int id; bool friend operator<(in w,in v){ if(w.a==v.a) return w.b<v.b; return w.a<v.a; } }fcy[maxn],ys[maxn]; void add(int x){ while(x<=N) { sum[x]++; x+=(-x)&x; } } int query(int x){ int res=0; while(x){ res+=sum[x]; x-=(-x)&x; } return res; } int main() { while(~scanf("%d",&N)&&N){ rep(i,1,N) scanf("%lf%lf%lf%lf",&A[i].x,&A[i].y,&B[i].x,&B[i].y); scanf("%lf%lf",&L,&R); F=line(point(L,0.0),point(0.,1.0)); C=line(point(R,0.0),point(0.,1.0)); rep(i,1,N) { point tA=A[i],tB=B[i]; A[i]=inters(line(tA,tB-tA),F); B[i]=inters(line(tA,tB-tA),C); } rep(i,1,N) fcy[i].a=A[i].y,fcy[i].b=B[i].y; sort(fcy+1,fcy+N+1); rep(i,1,N) ys[i].a=fcy[i].b,ys[i].id=i; sort(ys+1,ys+N+1); rep(i,1,N) a[i]=ys[i].a; rep(i,1,N) b[ys[i].id]=lower_bound(a+1,a+N+1,ys[i].a)-a; ans=0; rep(i,1,N) sum[i]=0; for(int i=N;i>=1;i--){ ans+=query(b[i]-1); add(b[i]); } printf("%lld\n",ans); } return 0; }
原文:https://www.cnblogs.com/hua-dong/p/10990069.html