首页 > 编程语言 > 详细

机器学习-线性回归(基于R语言)

时间:2019-06-08 13:43:50      阅读:100      评论:0      收藏:0      [点我收藏+]

基本概念

利用线性的方法,模拟因变量与一个或多个自变量之间的关系。自变量是模型输入值,因变量是模型基于自变量的输出值。

技术分享图片

因变量是自变量线性叠加和的结果。

 

线性回归模型背后的逻辑——最小二乘法计算线性系数

最小二乘法怎么理解?

它的主要思想就是求解未知参数,使得理论值与观测值之差(即误差,或者说残差)的平方和达到最小。在这里模型就是理论值,点为观测值。使得拟合对象无限接近目标对象。

技术分享图片

一元线性回归与多元线性回归

自变量只有一个的时候叫一元线性回归,自变量有多个时候叫多元线性回归。

 

R语言实现

bike.data <- read.csv("Shared Bike Sample Data - ML.csv")

lm(formula = 分数 ~ 城区 + 年龄 + 组别, data = bike.data)

 summary(lm_fit)

技术分享图片

技术分享图片

上面变量中城区 缺少 朝阳区,组别 缺少对照组。原因是由所有分类变量组成的哑变量中,有一个作为参考系不出现在线性回归结果中。

 

补充材料——哑变量

哑变量,取值为0或者1的变量,它将分类变量转换为数值变量,进而可以输入到线性回归模型中。在输入模型前将一个分类变量转换为多个哑变量。

在实际操作中遇到分类变量怎么办?

举例:

技术分享图片

技术分享图片

 

机器学习-线性回归(基于R语言)

原文:https://www.cnblogs.com/Grayling/p/10990151.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!