1、term vector介绍 获取document中的某个field内的各个term的统计信息 term information: term frequency in the field, term positions, start and end offsets, term payloads term statistics: 设置term_statistics=true; total term frequency, 一个term在所有document中出现的频率; document frequency,有多少document包含这个term field statistics: document count,有多少document包含这个field; sum of document frequency,一个field中所有term的df之和; sum of total term frequency,一个field中的所有term的tf之和 GET /twitter/tweet/1/_termvectors GET /twitter/tweet/1/_termvectors?fields=text term statistics和field statistics并不精准,不会被考虑有的doc可能被删除了 我告诉大家,其实很少用,用的时候,一般来说,就是你需要对一些数据做探查的时候。比如说,你想要看到某个term,某个词条,大话西游,这个词条,在多少个document中出现了。或者说某个field,film_desc,电影的说明信息,有多少个doc包含了这个说明信息。 2、index-iime term vector实验 term vector,涉及了很多的term和field相关的统计信息,有两种方式可以采集到这个统计信息 (1)index-time,你在mapping里配置一下,然后建立索引的时候,就直接给你生成这些term和field的统计信息了 (2)query-time,你之前没有生成过任何的Term vector信息,然后在查看term vector的时候,直接就可以看到了,会on the fly,现场计算出各种统计信息,然后返回给你 这一讲,不会手敲任何命令,直接copy我做好的命令,因为这一讲的重点,不是掌握什么搜索或者聚合的语法,而是说,掌握,如何采集term vector信息,然后如何看懂term vector信息,你能掌握利用term vector进行数据探查 PUT /my_index { "mappings": { "my_type": { "properties": { "text": { "type": "text", "term_vector": "with_positions_offsets_payloads", "store" : true, "analyzer" : "fulltext_analyzer" }, "fullname": { "type": "text", "analyzer" : "fulltext_analyzer" } } } }, "settings" : { "index" : { "number_of_shards" : 1, "number_of_replicas" : 0 }, "analysis": { "analyzer": { "fulltext_analyzer": { "type": "custom", "tokenizer": "whitespace", "filter": [ "lowercase", "type_as_payload" ] } } } } } PUT /my_index/my_type/1 { "fullname" : "Leo Li", "text" : "hello test test test " } PUT /my_index/my_type/2 { "fullname" : "Leo Li", "text" : "other hello test ..." } GET /my_index/my_type/1/_termvectors { "fields" : ["text"], "offsets" : true, "payloads" : true, "positions" : true, "term_statistics" : true, "field_statistics" : true } { "_index": "my_index", "_type": "my_type", "_id": "1", "_version": 1, "found": true, "took": 10, "term_vectors": { "text": { "field_statistics": { "sum_doc_freq": 6, "doc_count": 2, "sum_ttf": 8 }, "terms": { "hello": { "doc_freq": 2, "ttf": 2, "term_freq": 1, "tokens": [ { "position": 0, "start_offset": 0, "end_offset": 5, "payload": "d29yZA==" } ] }, "test": { "doc_freq": 2, "ttf": 4, "term_freq": 3, "tokens": [ { "position": 1, "start_offset": 6, "end_offset": 10, "payload": "d29yZA==" }, { "position": 2, "start_offset": 11, "end_offset": 15, "payload": "d29yZA==" }, { "position": 3, "start_offset": 16, "end_offset": 20, "payload": "d29yZA==" } ] } } } } } 3、query-time term vector实验 GET /my_index/my_type/1/_termvectors { "fields" : ["fullname"], "offsets" : true, "positions" : true, "term_statistics" : true, "field_statistics" : true } 一般来说,如果条件允许,你就用query time的term vector就可以了,你要探查什么数据,现场去探查一下就好了 4、手动指定doc的term vector GET /my_index/my_type/_termvectors { "doc" : { "fullname" : "Leo Li", "text" : "hello test test test" }, "fields" : ["text"], "offsets" : true, "payloads" : true, "positions" : true, "term_statistics" : true, "field_statistics" : true } 手动指定一个doc,实际上不是要指定doc,而是要指定你想要安插的词条,hello test,那么就可以放在一个field中 将这些term分词,然后对每个term,都去计算它在现有的所有doc中的一些统计信息 这个挺有用的,可以让你手动指定要探查的term的数据情况,你就可以指定探查“大话西游”这个词条的统计信息 5、手动指定analyzer来生成term vector GET /my_index/my_type/_termvectors { "doc" : { "fullname" : "Leo Li", "text" : "hello test test test" }, "fields" : ["text"], "offsets" : true, "payloads" : true, "positions" : true, "term_statistics" : true, "field_statistics" : true, "per_field_analyzer" : { "text": "standard" } } 6、terms filter GET /my_index/my_type/_termvectors { "doc" : { "fullname" : "Leo Li", "text" : "hello test test test" }, "fields" : ["text"], "offsets" : true, "payloads" : true, "positions" : true, "term_statistics" : true, "field_statistics" : true, "filter" : { "max_num_terms" : 3, "min_term_freq" : 1, "min_doc_freq" : 1 } } 这个就是说,根据term统计信息,过滤出你想要看到的term vector统计结果 也挺有用的,比如你探查数据把,可以过滤掉一些出现频率过低的term,就不考虑了 7、multi term vector GET _mtermvectors { "docs": [ { "_index": "my_index", "_type": "my_type", "_id": "2", "term_statistics": true }, { "_index": "my_index", "_type": "my_type", "_id": "1", "fields": [ "text" ] } ] } GET /my_index/_mtermvectors { "docs": [ { "_type": "test", "_id": "2", "fields": [ "text" ], "term_statistics": true }, { "_type": "test", "_id": "1" } ] } GET /my_index/my_type/_mtermvectors { "docs": [ { "_id": "2", "fields": [ "text" ], "term_statistics": true }, { "_id": "1" } ] } GET /_mtermvectors { "docs": [ { "_index": "my_index", "_type": "my_type", "doc" : { "fullname" : "Leo Li", "text" : "hello test test test" } }, { "_index": "my_index", "_type": "my_type", "doc" : { "fullname" : "Leo Li", "text" : "other hello test ..." } } ] }
原文:https://www.cnblogs.com/wangchuanfu/p/10990708.html