1、RDD基础
RDD.scala源码写到RDD的5个属性。driver生成RDD 分发到个executor,RDD可理解为操作描述,除sc.parallelize()生成的RDD包含数据外,一般RDD不包含具体数据,只存储要读取的文件位置,DAG等。
KafkaUtils.createDirectStream生成KafkaRDD,分区与topics分区数对应。
基于receiver的方式生成blockRDD,默认200ms取一次数据保存在block,由blockmanager管理,分区数与block数有关,与kafka分区数无关,offset由zookeeper管理。
处理逻辑写在foreachRDD中,转变为sparkcore编程,便于发生故障时,做数据校验二次处理。
* Internally, each RDD is characterized by five main properties: * - A list of partitions * - A function for computing each split * - A list of dependencies on other RDDs * - Optionally, a Partitioner for key-value RDDs (e.g. to say that the RDD is hash-partitioned) * - Optionally, a list of preferred locations to compute each split on (e.g. block locations for an HDFS file)
原文:https://www.cnblogs.com/csyusu/p/11062210.html