二者都是集成学习算法,都是将多个弱学习器组合成强学习器的方法。
Bagging:从原始数据集中每一轮有放回地抽取训练集,训练得到k个弱学习器,将这k个弱学习器以投票的方式得到最终的分类结果。
Boosting:每一轮根据上一轮的分类结果动态调整每个样本在分类器中的权重,训练得到k个弱分类器,他们都有各自的权重,通过加权组合的方式得到最终的分类结果。
存在。我们可以使用无监督学习的某些指标或人为地去评估模型性能,以此来判断是否过拟合。
将原始数据集划分为k个子集,将其中一个子集作为验证集,其余k-1个子集作为训练集,如此训练和验证一轮称为一次交叉验证。交叉验证重复k次,每个子集都做一次验证集,得到k个模型,加权平均k个模型的结果作为评估整体模型的依据。
k越大,不一定效果越好,而且越大的k会加大训练时间;在选择k时,需要考虑最小化数据集之间的方差,比如对于2分类任务,采用2折交叉验证,即将原始数据集对半分,若此时训练集中都是A类别,验证集中都是B类别,则交叉验证效果会非常差。
准确率 = TP / (TP + FP),召回率 = TP / (TP + FN),其中TP表示将正例正确分类为正例的数量,FP表示将负例错误分类为正例的数量,FN表示将正例错误分类为负例的数量。
准确率可以理解为在所有分类为正例的样品中,分类正确的样本所占比例;召回率可以理解为在所有原始数据集中的正例样品中,正确挑出的正例样本的比例。
因此若增大阈值t,更多不确定(分类概率较小)的样本将会被分为负例,剩余确定(分类概率较大)的样本所占比例将会增大(或不变),即正确率会增大(或不变);若增大阈值t,则可能将部分不确定(分类概率较小)的正例样品误分类为负例,即召回率会减小(或不变)。
A.增加网络层数,总能减小训练集错误率
B.减小网络层数,总能减小测试集错误率
C.增加网络层数,可能增加测试集错误率
C。增加神经网络层数,确实可能提高模型的泛化性能,但不能绝对地说更深的网络能带来更小的错误率,还是要根据实际应用来判断,比如会导致过拟合等问题,因此只能选C。
L1范数:向量中各个元素绝对值之和
L2范数:向量中各个元素平方和的开二次方根
Lp范数:向量中各个元素绝对值的p次方和的开p次方根
输入数据本身存在nan值,或者梯度爆炸了(可以降低学习率、或者设置梯度的阈值)
减小图像尺寸即数据降维,缓解过拟合,保持一定程度的旋转和平移不变性。
sigmoi,relu,tanh。非线性化
防止过拟合。每次训练,都对每个神经网络单元,按一定概率临时丢弃。
很有可能是梯度消失了,它表示神经网络迭代更新时,有些权值不更新的现象。
改变激活函数,改变权值的初始化等。
可以扩充数据集,对数据重新采样,改变评价指标等。
神经网络在反向传播过程中要不断地传播梯度,而当网络层数加深时,梯度在逐层传播过程中会逐渐衰减,导致无法对前面网络层的权重进行有效的调整。 残差网络中, 加入了short connections 为梯度带来了一个直接向前面层的传播通道,缓解了梯度的减小问题。
(1) 防止梯度消失 ( sigmoid的导数只有在0附近的时候有比较好的激活性,在正负饱和区的梯度都接近于0)
(2) ReLU的输出具有稀疏性
(3) ReLU函数简单计算速度快
空洞卷积也叫扩张卷积,在保持参数个数不变的情况下增大了卷积核的感受野,同时它可以保证输出的特征映射(feature map)的大小保持不变。一个扩张率为2的3×3卷积核,感受野与5×5的卷积核相同,但参数数量仅为9个。
在卷积神经网络中,感受野 (receptive field)的定义是 卷积神经网络每一层输出的特征图(feature map)上的像素点在原始图像上映射的区域大小。
模型复杂度过低,不能很好的拟合所有的数据
增加模型复杂度,如采用高阶模型(预测)或者引入更多特征(分类)等
Mobilenet(https://arxiv.org/abs/1704.04861)
Shufflenet(https://arxiv.org/abs/1707.01083)
Xception(https://arxiv.org/abs/1610.02357)
使用im2col的方法将划窗卷积转为两个大的矩阵相乘,见下图:
一般做法是将缺失的标签设置特殊标志,在计算梯度的时候忽略。
(1)Gaussian 满足mean=0,std=1的高斯分布x∼N(mean, )
(2)Xavier 满足x∼U(−a,+a)x∼U(−a,+a)的均匀分布, 其中 a = sqrt(3/n)
(3)MSRA 满足x∼N(0, )x∼N(0,)的高斯分布,其中σ = sqrt(2/n)
(4)Uniform 满足min=0,max=1的均匀分布。x∼U(min,max)x∼U(min,max)
等等
深度学习中的注意力机制从本质上讲和人类的选择性视觉注意力机制类似,核心目标是从大量信息中有选择地筛选出少量重要信息并聚焦到这些重要信息上,忽略大多不重要的信息。目前在神经机器翻译(Neural Machine Translation)、图像理解(Image caption)等场景都有广泛应用。
MaxPooling能保证卷积神经网络在一定范围内平移特征能得到同样的激励,具有平移不变形。
所谓的权值共享就是说,用一个卷积核去卷积一张图,这张图每个位置是被同样数值的卷积核操作的,权重是一样的,也就是参数共享。
(1)模型蒸馏技术(https://arxiv.org/abs/1503.02531)
(2)利用AutoML进行网络结构的优化,可将网络计算复杂度作为约束条件之一,得到更优的结构。(https://arxiv.org/abs/1807.11626)
在反向传播算法计算每一层的误差项的时候,需要乘以本层激活函数的导数值,如果导数值接近于0,则多次乘积之后误差项会趋向于0,而参数的梯度值通过误差项计算,这会导致参数的梯度值接近于0,无法用梯度下降法来有效的更新参数的值。
改进激活函数,选用更不容易饱和的函数,如ReLU函数。
欧氏距离,交叉熵,对比损失,合页损失
30.对于多分类问题,为什么神经网络一般使用交叉熵而不用欧氏距离损失?
交叉熵在一般情况下更容易收敛到一个更好的解。
通道降维,保证卷积神经网络可以接受任何尺寸的输入数据
不能,每次迭代时目标函数不一样
使得迭代之后的值在上次值的邻域内,保证可以忽略泰勒展开中的二次及二次以上的项
利用之前迭代时的梯度值,减小震荡
用多个小卷积核串联可以有大卷积核同样的能力,而且参数更少,另外有更多次的激活函数作用,增强非线性
对输入图像用多个不同尺寸的卷积核、池化操作进行同时处理,然后将输出结果按照通道拼接起来
反卷积即转置卷积,正向传播时乘以卷积核的转置矩阵,反向传播时乘以卷积核矩阵
由卷积输出结果近似重构输入数据,上采样
在数据送入神经网络的某一层进行处理之前,对数据做归一化。按照训练样本的批量进行处理,先减掉这批样本的均值,然后除以标准差,然后进行缩放和平移。缩放和平移参数同训练得到。预测时使用训练时确定的这些值来计算
核函数将数据映射到更高维的空间后处理,但不用做这种显式映射,而是先对两个样本向量做内积,然后用核函数映射。这等价于先进行映射,然后再做内积。
过拟合指在训练集上表现的很好,但在测试集上表现很差,推广泛化能力差。产生过拟合的原因是训练样本的抽样误差,训练时拟合了这种误差。增加训练样本,尤其是样本的代表性;正则化
非线性,几乎处处可到,单调
梯度为0,Hessian矩阵不定的点,不是极值点
不收敛,收敛太慢,泛化能力差。调整网络结构,调整样本,调整学习率,调整参数初始化策略
多个二分类器组合。1对1方案,1对剩余方案,多类损失函数
层次聚类,k均值算法,DBSCAN算法,OPTICS算法,谱聚类
随机选择K个样本作为类中心,将样本随机划分成K个子集然后计算类中心
EM算法用于求解带有隐变量的最大似然估计问题。由于有隐变量的存在,无法直接用最大似然估计求得对数似然函数极大值的公式解。此时通过jensen不等式构造对数似然函数的下界函数,然后优化下界函数,再用估计出的参数值构造新的下界函数,反复迭代直至收敛到局部极小值点
原文:https://www.cnblogs.com/wqbin/p/11070719.html