卡拉兹(Callatz)猜想:
对任何一个正整数 n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把 ( 砍掉一半。这样一直反复砍下去,最后一定在某一步得到 n=1。卡拉兹在 1950 年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证 (,以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……
我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过 1000 的正整数 n,简单地数一下,需要多少步(砍几下)才能得到 n=1?
每个测试输入包含 1 个测试用例,即给出正整数 n 的值。
输出从 n 计算到 1 需要的步数。
3
5
思路:递归即可。代码如下:
#include <iostream> #include <math.h> #include <algorithm> using namespace std; int number=0; void fact(int s) { if(s==1)return ; if(s%2==0){ s=s/2; number++; fact(s); } else { s=(3*s+1)/2; number++; fact(s); } } int main() { int n; scanf("%d",&n); fact(n); printf("%d\n",number); }
原文:https://www.cnblogs.com/whocarethat/p/11074412.html