1、目标:小样本预测。
2、注意:
①参照DPS的使用。
3、Matlab实现:
function []=greymodel(y) % 本程序主要用来计算根据灰色理论建立的模型的预测值。 % 应用的数学模型是 GM(1,1)。 % 原始数据的处理方法是一次累加法。 y=input(‘请输入数据 ‘); n=length(y); yy=ones(n,1); yy(1)=y(1); for i=2:n yy(i)=yy(i-1)+y(i); end B=ones(n-1,2); for i=1:(n-1) B(i,1)=-(yy(i)+yy(i+1))/2; B(i,2)=1; end BT=B‘; for j=1:n-1 YN(j)=y(j+1); end YN=YN‘; A=inv(BT*B)*BT*YN; a=A(1); u=A(2); t=u/a; i=1:n+2; yys(i+1)=(y(1)-t).*exp(-a.*i)+t; yys(1)=y(1); for j=n+2:-1:2 ys(j)=yys(j)-yys(j-1); end x=1:n; xs=2:n+2; yn=ys(2:n+2); plot(x,y,‘^r‘,xs,yn,‘*-b‘); det=0; sum1=0; sumpe=0; for i=1:n sumpe=sumpe+y(i); end pe=sumpe/n; for i=1:n; sum1=sum1+(y(i)-pe).^2; end s1=sqrt(sum1/n); sumce=0; for i=2:n sumce=sumce+(y(i)-yn(i)); end ce=sumce/(n-1); sum2=0; for i=2:n; sum2=sum2+(y(i)-yn(i)-ce).^2; end s2=sqrt(sum2/(n-1)); c=(s2)/(s1); disp([‘后验差比值为:‘,num2str(c)]); if c<0.35 disp(‘系统预测精度好‘) else if c<0.5 disp(‘系统预测精度合格‘) else if c<0.65 disp(‘系统预测精度勉强‘) else disp(‘系统预测精度不合格‘) end end end disp([‘下个拟合值为 ‘,num2str(ys(n+1))]); disp([‘再下个拟合值为‘,num2str(ys(n+2))]);
4、输入数据格式:
[724.57, 746.62, 778.27, 800.8, 827.75,871.1, 912.37, 954.28, 995.01, 1037.2] [2.874,3.278,3.337,3.390,3.679]
原文:https://www.cnblogs.com/lilei0128/p/11093723.html