首页 > 系统服务 > 详细

CS229 Machine Learning Stanford Course by Andrew Ng

时间:2019-06-26 23:33:53      阅读:281      评论:0      收藏:0      [点我收藏+]

CS229 Machine Learning Stanford Course by Andrew Ng

Course material, problem set Matlab code written by me, my notes about video course:

https://github.com/Yao-Yao/CS229-Machine-Learning

 

Contents:

  • supervised learning

Lecture 1

application field, pre-requisite knowledge

supervised learning, learning theory, unsupervised learning, reinforcement learning

 

Lecture 2

linear regression, batch gradient decent, stochastic gradient descent(SGD), normal equations

 

Lecture 3

locally weighted regression(Loess), probabilistic interpretation, logistic regression, perceptron

 

Lecture 4

Newton‘s method, exponential family(Bernoulli, Gaussian), generalized linear model(GLM), softmax regression

 

Lecture 5

discriminative vs  generative, Gaussian discriminent analysis, naive bayes, Laplace smoothing

 

Lecture 6

multinomial event model, nonlinear classifier, neural network, support vector machines(SVM), functional margin/geometric margin

 

Lecture 7

optimal margin classifier, convex optimization, Lagrangian multipliers, primal/dual optimization, KKT complementary condition, kernels

 

Lecture 8

Mercer theorem, L1-norm soft margin SVM, convergence criteria, coordinate ascent, SMO algorithm

 

  • learning theory

Lecture 9

underfit/overfit, bias/variance, training error/generalization error, Hoeffding inequality, central limit theorem(CLT), uniform convergence, sample complexity bound/error bound

 

Lecture 10

VC dimension, model selection, cross validation, structured risk minimization(SRM), feature selection, forward search/backward search/filter method

 

Lecture 11

Frequentist/Bayesian, online learning, SGD, perceptron algorithm, "advice for applying machine learning"

 

  • unsupervised learning

Lecture 12

k-means algorithm, density estimation, expectation-maximization(EM) algorithm, Jensen‘s inequality

 

Lecture 13

co-ordinate ascent, mixture of Gaussian(MoG), mixture of naive Bayes, factor analysis

 

Lecture 14

principal component analysis(PCA), compression, eigen-face

 

Lecture 15

latent sematic indexing(LSI), SVD, independent component analysis(ICA), "cocktail party"

 

  • reinforcement learning

Lecture 16

Markov decision process(MDP), Bellman‘s equations, value iteration, policy iteration

 

Lecture 17

continous state MDPs, inverted pendulum, discretize/curse of dimensionality, model/simulator of MDP, fitted value iteration

 

Lecture 18

state-action rewards, finite horizon MDPs, linear quadratic regulation(LQR), discrete time Riccati equations, helicopter project

 

Lecture 19

"advice for applying machine learning"-debug RL algorithm, differential dynamic programming(DDP), Kalman filter, linear quadratic Gaussian(LQG), LQG=KF+LQR

 

Lecture 20

partially observed MDPs(POMDP), policy search, reinforce algorithm, Pegasus policy search, conclusion

CS229 Machine Learning Stanford Course by Andrew Ng

原文:https://www.cnblogs.com/yaoyaohust/p/11094499.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!