首页 > 其他 > 详细

CF1153F Serval and Bonus Problem 【期望】

时间:2019-06-27 18:59:54      阅读:104      评论:0      收藏:0      [点我收藏+]

题目链接:洛谷

作为一只沉迷数学多年的蒟蒻OIer,在推柿子和dp之间肯定要选推柿子的!

首先假设线段长度为1,最后答案乘上$l$即可。

对于$x$这个位置,被区间覆盖的概率是$2x(1-x)$(线段端点分别在$x$的两边),不被区间覆盖的概率为$1-2x(1-x)$。

$$Ans=\sum_{i=k}^n {n\choose i}\int_{0}^1(2x(1-x))^i(1-2x(1-x))^{n-i}dx$$

$$=\sum_{i=k}^n {n\choose i}\int_{0}^1(2x(1-x))^i\sum_{j=0}^{n-i}(-1)^j{n-i\choose j}(2x(1-x))^jdx$$

$$=\sum_{i=k}^n{n\choose i}\sum_{j=0}^{n-i}(-1)^j2^{i+j}{n-i\choose j}\int_0^1x^{i+j}(1-x)^{i+j}dx$$

$$F_i=\int_0^1x^i(1-x)^idx$$

$$=\int_0^1x^i\sum_{j=0}^i(-1)^j{i\choose j}x^jdx$$

$$=\sum_{j=0}^i(-1)^j{i\choose j}\int_0^1x^{i+j}dx$$

$$=\sum_{j=0}^i(-1)^j{i\choose j}\frac{1}{i+j+1}$$

预处理$F_i$之后计算,时间复杂度$O(n^2)$。

技术分享图片
 1 #include<bits/stdc++.h>
 2 #define Rint register int
 3 using namespace std;
 4 typedef long long LL;
 5 const int N = 4003, mod = 998244353;
 6 int fac[N], inv[N], invfac[N], po[N];
 7 inline void init(int m){
 8     fac[0] = 1;
 9     for(Rint i = 1;i <= m;i ++) fac[i] = (LL) i * fac[i - 1] % mod;
10     inv[1] = 1;
11     for(Rint i = 2;i <= m;i ++) inv[i] = (LL) (mod - mod / i) * inv[mod % i] % mod;
12     invfac[0] = 1;
13     for(Rint i = 1;i <= m;i ++) invfac[i] = (LL) invfac[i - 1] * inv[i] % mod;
14     po[0] = 1;
15     for(Rint i = 1;i <= m;i ++) po[i] = (po[i - 1] << 1) % mod;
16 }
17 inline int C(int n, int m){
18     if(n < m || m < 0) return 0;
19     return (LL) fac[n] * invfac[n - m] % mod * invfac[m] % mod;
20 }
21 int n, k, l, ans, f[N];
22 int main(){
23     scanf("%d%d%d", &n, &k, &l);
24     init(n << 1 | 1);
25     for(Rint i = k;i <= n;i ++)
26         for(Rint j = 0;j <= i;j ++){
27             int t = (LL) C(i, j) * inv[i + j + 1] % mod;
28             if(j & 1) f[i] = (f[i] + mod - t) % mod; else f[i] = (f[i] + t) % mod;
29         }
30     for(Rint i = k;i <= n;i ++){
31         int t1 = 0;
32         for(Rint j = 0;j <= n - i;j ++){
33             int t2 = (LL) po[i + j] * C(n - i, j) % mod * f[i + j] % mod;
34             if(j & 1) t1 = (t1 + mod - t2) % mod; else t1 = (t1 + t2) % mod;
35         }
36         ans = (ans + (LL) t1 * C(n, i) % mod) % mod;
37     }
38     printf("%d", (LL) l * ans % mod);
39 }
CF1153F

据说这个式子还可以用NTT优化到$O(n\log n)$?有兴趣的各位可以思考一下反正我是没兴趣了

CF1153F Serval and Bonus Problem 【期望】

原文:https://www.cnblogs.com/AThousandMoons/p/11098895.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!