首页 > 其他 > 详细

(专题二)01 矩阵的处理-特殊矩阵

时间:2019-06-28 00:09:30      阅读:168      评论:0      收藏:0      [点我收藏+]

有哪些特殊矩阵?

通用的特殊矩阵

zeros函数 :产生全0矩阵

技术分享图片

技术分享图片

技术分享图片

 产生五行五列的随机矩阵A,其值是10--99的整数

技术分享图片

产生均值0.6,方差0.1的五行五列正态矩阵B

 技术分享图片

产生五阶单位阵

技术分享图片

验证等式成立

技术分享图片

ones函数  :产生全1矩阵

eye函数  : 产生对角线为1的矩阵,当矩阵是方阵时,得到一个单位矩阵

rand函数  :产生(0,1)区间分布的随机矩阵

randn函数  :产生均值为0,方差为1的标准正态分布随机矩阵

 魔方矩阵(Magic Square)

三阶魔方阵

技术分享图片

n阶魔方阵

技术分享图片

n>2时,有很多不同的魔方阵,matlab中函数magic(n)只产生一个特定的魔方阵

例如,产生8阶魔方阵,求其每行每列元素之和

技术分享图片

技术分享图片

范德蒙矩阵

技术分享图片

技术分享图片

 希尔伯特矩阵

技术分享图片

希尔伯特矩阵的元素为H(i,j)=1/(i+j-1)

生成希尔伯特矩阵的函数是hilb(n)

例如生成四阶希尔伯特矩阵,以有理数形式输出

技术分享图片

希尔伯特矩阵是著名的病态矩阵,任何一个元素的值发生变动,整个矩阵和逆矩阵就会发生很大的变化

随着阶数的增加,病态越明显

伴随矩阵

技术分享图片

技术分享图片

 

 生成伴随矩阵的函数是compan(p)

技术分享图片

技术分享图片

帕斯卡矩阵

技术分享图片

技术分享图片

生成5阶帕斯卡矩阵,整数形式输出

技术分享图片

验证逆矩阵的所有元素也是整数

技术分享图片

 

(专题二)01 矩阵的处理-特殊矩阵

原文:https://www.cnblogs.com/fanglijiao/p/11100100.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!