def f1():
x = 10
def f2():
print(x) # 10
x = 1000
f1() # 10
print(x) # 1000
def f1():
x = 10
def f2():
print(x) # 10
return f2
f = f1() # f2
f() # f2()
def f1(x):
def f2():
print(x) # 10
return f2
f3 = f1(10) # f2
f3() # f2() # 10
f3() # 10
f3() # 10
f4 = f1(5)
f4() # 5
f4() # 5
def f1(x):
def f2():
print(x) # 10
return f2
f2 = f1()
f2() # f2()
def login_deco(func):
def wrapper(*args,**kwargs):
login_judge = login()
if login_judge:
res = func(*args,**kwargs)
return res
return wrapper
@login_deco
def shopping():
pass
# shopping = deco(shopping)
# shopping()
def sanceng(x,y):
def login_deco(func):
print(x,y)
def wrapper(*args,**kwargs):
login_judge = login()
if login_judge:
res = func(*args,**kwargs)
return res
return wrapper
return login_deco
@sanceng(10,20)
def shopping():
pass
day20
# shopping = login_deco(shopping)
# shopping()
自定义的迭代器,函数内部使用yield关键,有yield关键字的函数只要调用,这个调用后的函数就是生成器
def f1():
yield 1
g = f1() # 变成生成器
for i in g:
print(i) # 1
递归本质上就是函数调用函数本身,必须得有结束条件,并且在递归的过程中,问题的规模必须都不断缩小
def find_num(num,lis):
if len(lis) == 1 and lis[0] != num:
print('没找到')
return
mid_ind = int(len(lis) / 2) # 中间索引
mid_num = lis[mid_ind] # 中间值
if num < mid_num:
lis = lis[:mid_ind]
find_num(num,lis)
elif num > mid_num:
lis = lis[mid_ind + 1:]
find_num(num, lis)
else:
print('find')
lis = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
find_num(20,lis)
lamdbda 参数 : 逻辑代码
max(dic,key=lambda name: dic[name])
max(dic)
max(lis/se/tup)
类似于工厂的流水线,机械式的一步一步完成一个项目,把完成步骤具体细分,这样步骤与步骤之间互不干涉
缺点:扩展性差,只要有一个步骤断了,项目就崩溃了
优点:清晰优雅
原文:https://www.cnblogs.com/nickchen121/p/11106249.html