原文地址:
https://blog.csdn.net/qq_23981335/article/details/89097757
---------------------
作者:周卫林
来源:CSDN
-----------------------------------------------------------------------------------------------
1.构建LSTM
在tensorflow中,存在两个库函数可以构建LSTM,分别为tf.nn.rnn_cell.BasicLSTMCell和tf.contrib.rnn.BasicLSTMCell,最常使用的参数是num_units,表示的是LSTM中隐含状态的维度,state_in_tuple表示将(c,h)表示为一个元组。
lstm_cell=tf.nn.rnn_cell.BasicLSTMCell(num_units=hidden_size)
2.初始化隐含状态
LSTM的输入不仅有数据输入,还有前一个时刻的状态输入,因此需要初始化输入状态
initial_state=lstm_cell.zero_state(batch_size,dtype=tf.float32)
3.添加dropout层
可以在基本的LSTM上添加dropout层
lstm_cell = tf.nn.rnn_cell.DropoutWrapper(lstm_cell, output_keep_prob=self.keep_prob)
4.多层LSTM
cell = tf.nn.rnn_cell.MultiRNNCell([lstm_cell]*hidden_layer_num)
其中hidden_layer_num为LSTM的层数
5.完整代码
(1)原理表达最清楚、最一目了然的LSTM构建方式如下:
import tensorflow as tf import numpy as np batch_size=2 hidden_size=64 num_steps=10 input_dim=8 input=np.random.randn(batch_size,num_steps,input_dim) input[1,6:]=0 x=tf.placeholder(dtype=tf.float32,shape=[batch_size,num_steps,input_dim],name=‘input_x‘) lstm_cell=tf.nn.rnn_cell.BasicLSTMCell(num_units=hidden_size) initial_state=lstm_cell.zero_state(batch_size,dtype=tf.float32) outputs=[] with tf.variable_scope(‘RNN‘): for i in range(num_steps): if i > 0 : # print(tf.get_variable_scope()) tf.get_variable_scope().reuse_variables() output=lstm_cell(x[:,i,:],initial_state) outputs.append(output) with tf.Session() as sess: init_op=tf.initialize_all_variables() sess.run(init_op) np.set_printoptions(threshold=np.NAN) result=sess.run(outputs,feed_dict={x:input}) print(result)
(2)简化构建形式
如果觉得写for循环比较麻烦,则可以使用tf.nn.static_rnn函数,这个函数就是使用for循环实现的LSTM ,但是需要注意的是该函数的参数设置:
tf.nn.static_rnn( cell, inputs, initial_state=None, dtype=None, sequence_length=None, scope=None )
其中cell即为LSTM,inputs的维度必须为 [ num_steps, batch_size, input_dim ] ,sequence_length为batch_size个输入的长度。
完整代码如下:
import tensorflow as tf import numpy as np batch_size=2 num_units=64 num_steps=10 input_dim=8 input=np.random.randn(batch_size,num_steps,input_dim) input[1,6:]=0 x=tf.placeholder(dtype=tf.float32,shape=[batch_size,num_steps,input_dim],name=‘input_x‘) lstm_cell=tf.nn.rnn_cell.BasicLSTMCell(num_units) initial_state=lstm_cell.zero_state(batch_size,dtype=tf.float32) y=tf.unstack(x,axis=1) # x:[batch_size,num_steps,input_dim],type:placeholder # y:[num_steps,batch_size,input_dim],type:list output,state=tf.nn.static_rnn(lstm_cell,y,sequence_length=[10,6],initial_state=initial_state) with tf.Session() as sess: init_op=tf.initialize_all_variables() sess.run(init_op) np.set_printoptions(threshold=np.NAN) result1,result2=(sess.run([output,state],feed_dict={x:input})) result1=np.asarray(result1) result2=np.asarray(result2) print(result1) print(‘*‘*100) print(result2)
还可以使用tf.nn.dynamic_rnn函数来实现
tf.nn.dynamic_rnn( cell, inputs, sequence_length=None, initial_state=None, dtype=None, parallel_iterations=None, swap_memory=False, time_major=False, scope=None )
该函数的cell即为LSTM,inputs的维度是 [batch_size,num_steps,input_dim]
output,state=tf.nn.dynamic_rnn(cell,x,sequence_length=[10,6],initial_state=initial_state)
6、static_rnn与dynamic_rnn之间的区别
不论dynamic_rnn还是static_rnn,每个batch的序列长度都是一样的(不足的话自己要去padding),不同的是dynamic会根据 sequence_length 中止计算。另外一个不同是dynamic_rnn动态生成graph 。
但是dynamic_rnn不同的batch序列长度可以不一样,例如第一个batch长度为10,第二个batch长度为20,但是static_rnn不同的batch序列长度必须是相同的,都必须是num_steps
下面使用dynamic_rnn来实现不同batch之间的序列长度不同:
import tensorflow as tf import numpy as np batch_size=2 num_units=64 num_steps=10 input_dim=8 input=np.random.randn(batch_size,num_steps,input_dim) input2=np.random.randn(batch_size,num_steps*2,input_dim) x=tf.placeholder(dtype=tf.float32,shape=[batch_size,None,input_dim],name=‘input‘) # None 表示序列长度不定 lstm_cell=tf.nn.rnn_cell.BasicLSTMCell(num_units) initial_state=lstm_cell.zero_state(batch_size,dtype=tf.float32) output,state=tf.nn.dynamic_rnn(lstm_cell,x,initial_state=initial_state) with tf.Session() as sess: init_op=tf.initialize_all_variables() sess.run(init_op) np.set_printoptions(threshold=np.NAN) result1,result2=(sess.run([output,state],feed_dict={x:input})) # 序列长度为10 x:[batch_size,num_steps,input_dim],此时LSTM个数为10个,或者说循环10次LSTM result1=np.asarray(result1) result2=np.asarray(result2) print(result1) print(‘*‘*100) print(result2) result1, result2 = (sess.run([output, state], feed_dict={x:input2})) # 序列长度为20 x:[batch_size,num_steps,input_dim],此时LSTM个数为20个,或者说循环20次LSTM result1 = np.asarray(result1) result2 = np.asarray(result2) print(result1) print(‘*‘ * 100) print(result2)
但是static_rnn是不可以的。
7.dynamic_rnn的性能和static_rnn的性能差异
import tensorflow as tf import numpy as np import time num_step=100 input_dim=8 batch_size=2 num_unit=64 input_data=np.random.randn(batch_size,num_step,input_dim) x=tf.placeholder(dtype=tf.float32,shape=[batch_size,num_step,input_dim]) seq_len=tf.placeholder(dtype=tf.int32,shape=[batch_size]) lstm_cell=tf.nn.rnn_cell.BasicLSTMCell(num_unit) initial_state=lstm_cell.zero_state(batch_size,dtype=tf.float32) y=tf.unstack(x,axis=1) output1,state1=tf.nn.static_rnn(lstm_cell,y,sequence_length=seq_len,initial_state=initial_state) output2,state2=tf.nn.dynamic_rnn(lstm_cell,x,sequence_length=seq_len,initial_state=initial_state) print(‘begin train...‘) with tf.Session() as sess: init_op=tf.initialize_all_variables() sess.run(init_op) for i in range(100): sess.run([output1,state1],feed_dict={x:input_data,seq_len:[10]*batch_size}) time1=time.time() for i in range(100): sess.run([output1,state1],feed_dict={x:input_data,seq_len:[10]*batch_size}) time2=time.time() print(‘static_rnn seq_len:10\t\t{}‘.format(time2-time1)) for i in range(100): sess.run([output1,state1],feed_dict={x:input_data,seq_len:[100]*batch_size}) time3=time.time() print(‘static_rnn seq_len:100\t\t{}‘.format(time3-time2)) for i in range(100): sess.run([output2,state2],feed_dict={x:input_data,seq_len:[10]*batch_size}) time4=time.time() print(‘dynamic_rnn seq_len:10\t\t{}‘.format(time4-time3)) for i in range(100): sess.run([output2,state2],feed_dict={x:input_data,seq_len:[100]*batch_size}) time5=time.time() print(‘dynamic_rnn seq_len:100\t\t{}‘.format(time5-time4))
result:
static_rnn seq_len:10 0.8497538566589355 static_rnn seq_len:100 1.5897266864776611 dynamic_rnn seq_len:10 0.4857025146484375 dynamic_rnn seq_len:100 2.8693313598632812
序列短的要比序列长的运行的快,dynamic_rnn比static_rnn快的原因是:dynamic_rnn运行到序列长度后自动停止,不再运行,而static_rnn必须运行完num_steps才停止;序列长度为100的实验结果和分析相反,可能是因为循环耗时间,比不上直接在100个LSTM上运行的性能。
-----------------------------------------------------------------------------------------------
【转载】 LSTM构建步骤以及static_rnn与dynamic_rnn之间的区别
原文:https://www.cnblogs.com/devilmaycry812839668/p/11109399.html