torch.max(input) -> Tensor
Explation:
? Returns the maximum value of all elements in the input tensor
Example:
>>> a = torch.randn(1, 3)
>>> a
tensor([[-0.7461, -0.7730, 0.6381]])
>>> torch.max(a)
tensor(0.6381)
torch.max(input, dim, keepdim=False, out=None) ->(Tensor, LongTensor)
Explation:
? Returns a namedtuple (values, indices) where values is the maximum value of each row of the input tensor in the given dimension dim. And indices is the index location of each maximum value found (argmax).
Parameters:
dim retained or not. Default: False.Example:
>>> a = torch.randn(4, 4)
tensor([[-0.7037, -0.9814, -0.2549, 0.7349],
[-0.0937, 0.9692, -0.2475, -0.3693],
[ 0.5427, 0.9605, 0.2246, 0.3269],
[-0.9964, 0.6920, 0.7989, -0.2616]])
>>> torch.max(a)
torch.return_types.max(values=tensor([0.7349, 0.9692, 0.9605, 0.7989]),
indices=tensor([3, 1, 1, 2]))
torch.max(input, other, out=None) ->Tensor
Explation:
? Each element of the tensor input is compared with the corresponding element of the tensor other and an element-wise maximum is taken. The shapes of input and other don’t need to match, but they must be broadcastable.
\[
out_i = \max(tensor_i, other_i)
\]
Parameters:
Example:
>>> a = torch.randn(4)
>>> a
tensor([ 0.2942, -0.7416, 0.2653, -0.1584])
>>> b = torch.randn(4)
>>> b
tensor([ 0.8722, -1.7421, -0.4141, -0.5055])
>>> torch.max(a, b)
tensor([ 0.8722, -0.7416, 0.2653, -0.1584])
同理,这些方法可推广至torch.min().
原文:https://www.cnblogs.com/xxxxxxxxx/p/11117727.html