首页 > 编程语言 > 详细

Python数据分析与机器学习-NumPy_5

时间:2019-07-03 09:42:42      阅读:122      评论:0      收藏:0      [点我收藏+]
import numpy as np
data = np.sin(np.arange(20)).reshape(5,4)
print(data)
ind = data.argmax(axis=0)
print(ind)
data_max = data[ind,range(data.shape[1])]
print(data_max)
all(data_max == data.max(axis=0))
[[ 0.          0.84147098  0.90929743  0.14112001]
 [-0.7568025  -0.95892427 -0.2794155   0.6569866 ]
 [ 0.98935825  0.41211849 -0.54402111 -0.99999021]
 [-0.53657292  0.42016704  0.99060736  0.65028784]
 [-0.28790332 -0.96139749 -0.75098725  0.14987721]]
[2 0 3 1]
[0.98935825 0.84147098 0.99060736 0.6569866 ]





True
a = np.arange(0,40,10)
b = np.tile(a,(3,5))
print(a)
print(b)
[ 0 10 20 30]
[[ 0 10 20 30  0 10 20 30  0 10 20 30  0 10 20 30  0 10 20 30]
 [ 0 10 20 30  0 10 20 30  0 10 20 30  0 10 20 30  0 10 20 30]
 [ 0 10 20 30  0 10 20 30  0 10 20 30  0 10 20 30  0 10 20 30]]
a = np.array([[4,3,5],[1,2,1]])
print(a)
b = np.sort(a,axis=1)
print(b)
a.sort(axis=1)
print(a)
print("---")
a = np.array([4,3,1,2])
j = np.argsort(a)
print(j)
print(a[j])
[[4 3 5]
 [1 2 1]]
[[3 4 5]
 [1 1 2]]
[[3 4 5]
 [1 1 2]]
---
[2 3 1 0]
[1 2 3 4]

Python数据分析与机器学习-NumPy_5

原文:https://www.cnblogs.com/SweetZxl/p/11124179.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!