package statistics import common.util.timeUtil import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.sql.SQLContext import org.apache.spark.sql.functions.{col, count, split} class costMonth { def main(args: Array[String]): Unit = { val conf = new SparkConf() // .setAppName("finance test") // .setMaster("local") val sc = new SparkContext(conf) // sc.setLogLevel("WARN") val sqlContext = new SQLContext(sc) val df = sqlContext.load( "org.apache.phoenix.spark" , Map("table" -> "ASSET_NORMAL" , "zkUrl" -> "node3,node4,node5:2181") ) df.registerTempTable("asset_normal") def costingWithin(originalValue: Float, years: Int): Double = (originalValue*0.95)/(years*365) sqlContext.udf.register("costingWithin", costingWithin _) def costingBeyond(originalValue: Float): Double = originalValue*0.05/365 sqlContext.udf.register("costingBeyond", costingBeyond _) def expire(acceptanceDate: String, years: Int): Boolean = timeUtil.dateStrAddYears2TimeStamp(acceptanceDate, timeUtil.SECOND_TIME_FORMAT, years) > System.currentTimeMillis() sqlContext.udf.register("expire", expire _) def monthSpace(stDate: String, endDate: String): Int = timeUtil.getMonthSpace(stDate, endDate) sqlContext.udf.register("monthSpace", monthSpace _) val costDay = sqlContext .sql( "select ID, ASSET_ID, ASSET_NAME, ACCEPTANCE_DATE, FIRST_DEPARTMENT_ID, SECOND_DEPARTMENT_ID, case when expire(ACCEPTANCE_DATE, DEPRECIABLE_LIVES_NAME) then costingWithin(ORIGINAL_VALUE, DEPRECIABLE_LIVES_NAME) else costingBeyond(ORIGINAL_VALUE) end as ACTUAL_COST, current_timestamp() as GENERATION_TIME from asset_normal " ) // df.show(false) costDay.write .format("org.apache.phoenix.spark") .mode("overwrite") .option("table", "ASSET_FINANCIAL_DETAIL") .option("zkUrl", "node3,node4,node5:2181") .save() } }
ln -s /etc/hbase/conf.cloudera.hbase/hbase-site.xml /etc/spark/conf.cloudera.spark_on_yarn/hbase-site.xml
spark-shell --conf "spark.executor.extraClassPath=/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/spark/lib/cf/phoenix-spark-4.14.0-cdh5.14.2.jar:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/spark/lib/cf/phoenix-client-4.14.1-HBase-1.4.jar" --conf "spark.driver.extraClassPath=/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/spark/lib/cf/phoenix-spark-4.14.0-cdh5.14.2.jar:/opt/cloudera/parcels/CDH-5.14.2-1.cdh5.14.2.p0.3/lib/spark/lib/cf/phoenix-client-4.14.1-HBase-1.4.jar"
val df = sqlContext.load("org.apache.phoenix.spark",Map("table"->"ASSET_NORMAL","zkUrl"->"node3,node4,node5:2181"))
参考:
https://blog.csdn.net/dingyuanpu/article/details/52623655
https://www.cnblogs.com/feiyudemeng/p/9254046.html
http://dequn.github.io/2016/11/08/phoenix-spark-setting/
https://community.hortonworks.com/questions/212315/spark2-phoenix-plugin-with-zeppelin.html
https://community.hortonworks.com/articles/179762/how-to-connect-to-phoenix-tables-using-spark2.html
https://mvnrepository.com/artifact/org.apache.phoenix/phoenix-spark/4.14.0-cdh5.14.2
https://mvnrepository.com/artifact/org.apache.phoenix/phoenix-client/4.14.1-HBase-1.4
https://blogs.apache.org/phoenix/entry/spark_integration_in_apache_phoenix
http://phoenix.apache.org/phoenix_spark.html#
https://www.cnblogs.com/skyEva/p/5859742.html
Spark教程——(4)Spark-shell基于Phoenix访问HBase数据
原文:https://www.cnblogs.com/ratels/p/11129744.html