首页 > 其他 > 详细

高精度模板

时间:2019-07-07 23:51:55      阅读:181      评论:0      收藏:0      [点我收藏+]
#include<bits/stdc++.h>
#define MAXN 9999
#define MAXSIZE 10
#define DLEN 4
typedef long long ll;
using namespace std;
 
class BigNum
{
private:
    ll a[50];    //可以控制大数的位数
    ll len;       //大数长度
public:
    BigNum(){ len = 1;memset(a,0,sizeof(a)); }   //构造函数
    BigNum(const ll);       //将一个ll类型的变量转化为大数
    BigNum(const char*);     //将一个字符串类型的变量转化为大数
    BigNum(const BigNum &);  //拷贝构造函数
    BigNum &operator=(const BigNum &);   //重载赋值运算符,大数之间进行赋值运算
 
    friend istream& operator>>(istream&,  BigNum&);   //重载输入运算符
    friend ostream& operator<<(ostream&,  BigNum&);   //重载输出运算符
 
    BigNum operator+(const BigNum &) const;   //重载加法运算符,两个大数之间的相加运算
    BigNum operator-(const BigNum &) const;   //重载减法运算符,两个大数之间的相减运算
    BigNum operator*(const BigNum &) const;   //重载乘法运算符,两个大数之间的相乘运算
    BigNum operator/(const ll   &) const;    //重载除法运算符,大数对一个整数进行相除运算
 
    BigNum operator^(const ll  &) const;    //大数的n次方运算
    ll    operator%(const ll  &) const;    //大数对一个ll类型的变量进行取模运算
    bool   operator>(const BigNum & T)const;   //大数和另一个大数的大小比较
    bool   operator>(const ll & t)const;      //大数和一个ll类型的变量的大小比较

};
BigNum::BigNum(const ll b)     //将一个ll类型的变量转化为大数
{
    ll c,d = b;
    len = 0;
    memset(a,0,sizeof(a));
    while(d > MAXN)
    {
        c = d - (d / (MAXN + 1)) * (MAXN + 1);
        d = d / (MAXN + 1);
        a[len++] = c;
    }
    a[len++] = d;
}
BigNum::BigNum(const char*s)     //将一个字符串类型的变量转化为大数
{
    ll t,k,index,l,i;
    memset(a,0,sizeof(a));
    l=strlen(s);
    len=l/DLEN;
    if(l%DLEN)
        len++;
    index=0;
    for(i=l-1;i>=0;i-=DLEN)
    {
        t=0;
        k=i-DLEN+1;
        if(k<0)
            k=0;
        for(ll j=k;j<=i;j++)
            t=t*10+s[j]-0;
        a[index++]=t;
    }
}
BigNum::BigNum(const BigNum & T) : len(T.len)  //拷贝构造函数
{
    ll i;
    memset(a,0,sizeof(a));
    for(i = 0 ; i < len ; i++)
        a[i] = T.a[i];
}
BigNum & BigNum::operator=(const BigNum & n)   //重载赋值运算符,大数之间进行赋值运算
{
    ll i;
    len = n.len;
    memset(a,0,sizeof(a));
    for(i = 0 ; i < len ; i++)
        a[i] = n.a[i];
    return *this;
}
istream& operator>>(istream & in,  BigNum & b)   //重载输入运算符
{
    char ch[MAXSIZE*4];
    ll i = -1;
    in>>ch;
    ll l=strlen(ch);
    ll count=0,sum=0;
    for(i=l-1;i>=0;)
    {
        sum = 0;
        ll t=1;
        for(ll j=0;j<4&&i>=0;j++,i--,t*=10)
        {
            sum+=(ch[i]-0)*t;
        }
        b.a[count]=sum;
        count++;
    }
    b.len =count++;
    return in;
 
}
ostream& operator<<(ostream& out,  BigNum& b)   //重载输出运算符
{
    ll i;
    cout << b.a[b.len - 1];
    for(i = b.len - 2 ; i >= 0 ; i--)
    {
        cout.width(DLEN);
        cout.fill(0);
        cout << b.a[i];
    }
    return out;
}
 
BigNum BigNum::operator+(const BigNum & T) const   //两个大数之间的相加运算
{
    BigNum t(*this);
    ll i,big;      //位数
    big = T.len > len ? T.len : len;
    for(i = 0 ; i < big ; i++)
    {
        t.a[i] +=T.a[i];
        if(t.a[i] > MAXN)
        {
            t.a[i + 1]++;
            t.a[i] -=MAXN+1;
        }
    }
    if(t.a[big] != 0)
        t.len = big + 1;
    else
        t.len = big;
    return t;
}
BigNum BigNum::operator-(const BigNum & T) const   //两个大数之间的相减运算
{
    ll i,j,big;
    bool flag;
    BigNum t1,t2;
    if(*this>T)
    {
        t1=*this;
        t2=T;
        flag=0;
    }
    else
    {
        t1=T;
        t2=*this;
        flag=1;
    }
    big=t1.len;
    for(i = 0 ; i < big ; i++)
    {
        if(t1.a[i] < t2.a[i])
        {
            j = i + 1;
            while(t1.a[j] == 0)
                j++;
            t1.a[j--]--;
            while(j > i)
                t1.a[j--] += MAXN;
            t1.a[i] += MAXN + 1 - t2.a[i];
        }
        else
            t1.a[i] -= t2.a[i];
    }
    t1.len = big;
    while(t1.a[len - 1] == 0 && t1.len > 1)
    {
        t1.len--;
        big--;
    }
    if(flag)
        t1.a[big-1]=0-t1.a[big-1];
    return t1;
}
 
BigNum BigNum::operator*(const BigNum & T) const   //两个大数之间的相乘运算
{
    BigNum ret;
    ll i,j,up;
    ll temp,temp1;
    for(i = 0 ; i < len ; i++)
    {
        up = 0;
        for(j = 0 ; j < T.len ; j++)
        {
            temp = a[i] * T.a[j] + ret.a[i + j] + up;
            if(temp > MAXN)
            {
                temp1 = temp - temp / (MAXN + 1) * (MAXN + 1);
                up = temp / (MAXN + 1);
                ret.a[i + j] = temp1;
            }
            else
            {
                up = 0;
                ret.a[i + j] = temp;
            }
        }
        if(up != 0)
            ret.a[i + j] = up;
    }
    ret.len = i + j;
    while(ret.a[ret.len - 1] == 0 && ret.len > 1)
        ret.len--;
    return ret;
}
BigNum BigNum::operator/(const ll & b) const   //大数对一个整数进行相除运算
{
    BigNum ret;
    ll i,down = 0;
    for(i = len - 1 ; i >= 0 ; i--)
    {
        ret.a[i] = (a[i] + down * (MAXN + 1)) / b;
        down = a[i] + down * (MAXN + 1) - ret.a[i] * b;
    }
    ret.len = len;
    while(ret.a[ret.len - 1] == 0 && ret.len > 1)
        ret.len--;
    return ret;
}
ll BigNum::operator %(const ll & b) const    //大数对一个ll类型的变量进行取模运算
{
    ll i,d=0;
    for (i = len-1; i>=0; i--)
    {
        d = ((d * (MAXN+1))% b + a[i])% b;
    }
    return d;
}
BigNum BigNum::operator^(const ll & n) const    //大数的n次方运算
{
    BigNum t,ret(1);
    ll i;
    if(n<0)
        exit(-1);
    if(n==0)
        return 1;
    if(n==1)
        return *this;
    ll m=n;
    while(m>1)
    {
        t=*this;
        for( i=1;i<<1<=m;i<<=1)
        {
            t=t*t;
        }
        m-=i;
        ret=ret*t;
        if(m==1)
            ret=ret*(*this);
    }
    return ret;
}
bool BigNum::operator>(const BigNum & T) const   //大数和另一个大数的大小比较
{
    ll ln;
    if(len > T.len)
        return true;
    else if(len == T.len)
    {
        ln = len - 1;
        while(a[ln] == T.a[ln] && ln >= 0)
            ln--;
        if(ln >= 0 && a[ln] > T.a[ln])
            return true;
        else
            return false;
    }
    else
        return false;
}
bool BigNum::operator >(const ll & t) const    //大数和一个ll类型的变量的大小比较
{
    BigNum b(t);
    return *this>b;
}
 
ll n,a[105],m,ans=0;
ll gcd(ll a,ll b){return b==0?a:gcd(b,a%b);}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
 
void dfs(ll d,ll tot,ll cnt){
  if(d==n+1){
    if(cnt){
      if(cnt&1) ans+=m/tot;
      else ans-=m/tot;
    }
    return;
  }
 
  dfs(d+1,tot,cnt);
 
  BigNum tmp=BigNum(tot)/gcd(tot,a[d])*BigNum(a[d]);
  if(tmp>BigNum(m)) return;
  dfs(d+1,lcm(tot,a[d]),cnt+1);
}
 
int main()
{
    scanf("%lld%lld",&n,&m);
    for(ll i=1;i<=n;i++) scanf("%lld",&a[i]);
 
    dfs(1,1,0);
 
    ans=max((ll)0,m-ans);
    printf("%lld\n",ans);
    return 0;
}

 

高精度模板

原文:https://www.cnblogs.com/nublity/p/11148833.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!