按照题意对图预处理,得到一棵树,对于每对询问求LCA的同时求距离,累加即为答案。
注意离散化操作带来的越界问题。。。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <cstring>
#include <vector>
#include <map>
#define N 1000010
using namespace std;
char a, str[2005];
char s[2005][2005];
int n, m,lsum=1,L=0,i,j,k,x,y,cnt;
long long Ans;
int head[2*N],v[2*N],d[2*N];
int f[N][22],p[22];
int q[10010],Q[10010];
struct Egde{
int t,next;
}e[N*8];
vector <int> son[N];
map <int,int> M;
char sw(char a) {
if (a == ' ') return 'k';
if (a == '_') return 'h';
if (a == '|') return 's';
if (a == ' ') return 'z';
if (a == '\n') return '\n';
}
int ID(int x, int y) {
if (M[x*10000+y]) return M[x*10000+y];
else {
++cnt;
M[x*10000+y]=cnt;
return cnt;
}
}
inline void Swap(int &x,int &y){x^=y^=x^=y;}
inline void add(int s,int t){
e[lsum].t=t; e[lsum].next=head[s]; head[s]=lsum++;
e[lsum].t=s; e[lsum].next=head[t]; head[t]=lsum++;
}
inline void Maketree(int x){
int i=0;
v[x]=1;
for (i=head[x];i;i=e[i].next){
if (v[e[i].t]) continue;
f[e[i].t][0]=x; d[e[i].t]=d[x]+1;
Maketree(e[i].t); son[x].push_back(e[i].t);
}
}
inline void Dfs(int x){
int i=0,s=0;
for (i=1;i<=20;i++) f[x][i]=f[f[x][i-1]][i-1];
if (!son[x].size()) return;
for (s=son[x].size(),i=0;i<s;i++) Dfs(son[x][i]);
}
inline int LCA(int x,int y){
int l=0,i=0; L=0;
if (d[x]<d[y]) Swap(x,y);
l=d[x]-d[y];
for (i=0;i<=20;i++)
if (l&p[i]) x=f[x][i];
L=l;
if (x==y) return x;
for (i=20;i>=0;i--)
if (f[x][i]!=f[y][i]){
L+=2*p[i],x=f[x][i],y=f[y][i];
}
L+=2;
}
int main(){
scanf("%d%d\n", &n, &m);
for (i = 1; i <= 2*m+1; i++) scanf("%c", &a);
for (i = 1; i <= n; i++) {
for (j = 1; j <= 2*m+2; j++) scanf("%c", &s[i][j]);
}
for (i = 1; i <= n; i++) {
int l = 0;
for (j = 3; j <= 2*m-1; j+=2) {
l++;
if (s[i][j] == ' ') add(ID(i, l), ID(i, l+1));
}
}
for (i = 1; i < n; i++) {
int l = 0;
for (j = 2; j <= 2*m; j+=2) {
l++;
if (s[i][j] == ' ') add(ID(i, l), ID(i+1, l));
}
}
for (i=1,p[0]=1;i<=20;i++) p[i]=p[i-1]*2;
d[ID(1,1)]=1; Maketree(ID(1,1)); Dfs(ID(1,1));
scanf("%d",&k);
for (i=1;i<=k;i++) scanf("%d%d",&q[i],&Q[i]);
for (i=1;i<k;i++){
x=ID(q[i],Q[i]); y=ID(q[i+1],Q[i+1]);
LCA(x,y); Ans+=L;
}
cout<<Ans<<endl;
return 0;
}
先求两点与红圈切线长度,以此求得两切点间的弧上距离,答案为该距离加两切点到两点的距离。
注:int会带来奇怪的精度问题
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<vector>
#include<map>
#include<queue>
#include<cstdlib>
#include<cmath>
using namespace std;
inline double Sqr(double x){
return (double)1.0*x*x;
}
inline double Dis(double a,double b,double c,double d){
return (sqrt(Sqr(a-c)+Sqr(b-d)));
}
double X1,X2,X3,X4,Y1,Y2,Y3,Y4,r1,r2;
double d1,d2,d3,dis1,dis2,p,Ans;
double J1,J2,J3;
int main(){
scanf("%lf%lf",&X1,&Y1);
scanf("%lf%lf",&X2,&Y2);
scanf("%lf%lf%lf",&X3,&Y3,&r1);
scanf("%lf%lf%lf",&X4,&Y4,&r2);
d1=Dis(X1,Y1,X4,Y4);
d2=Dis(X2,Y2,X4,Y4);
d3=Dis(X1,Y1,X2,Y2);
double hh=sqrt(Sqr(d1)-Sqr(d3/2));
J1=acos((double)1.0*r2/d1);
J2=acos((double)1.0*r2/d2);
p=1.0*Sqr(d1)+Sqr(d2)-Sqr(d3);
p/=2.0*d1*d2;
J3=acos(p);
dis1=sqrt(Sqr(d1)-Sqr(r2));
dis2=sqrt(Sqr(d2)-Sqr(r2));
Ans=dis1+dis2+(double)1.0*r2*(J3-J1-J2);
printf("%.10lf\n",Ans);
return 0;
}
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
using namespace std;
int ans = 0, anss[50005];
int tot, adj[50005], fir[50005], nxt[50005], w[50005];
void add(int a, int b, int c) {
adj[++tot] = b;
nxt[tot] = fir[a];
fir[a] = tot;
w[tot] = c;
return ;
}
int ask(int a) {
if (anss[a]) return anss[a];
int now = 0;
for (int t = fir[a]; t; t = nxt[t]) {
now = max(now, w[t]+ask(adj[t]));
}
anss[a] = now;
return now;
}
int main()
{
int n, m, a, b, c;
scanf("%d%d", &n, &m);
for (int i = 1; i <= m; i++) {
scanf("%d%d%d", &a, &b, &c);
add(a, b, c);
}
for (int i = 1; i <= n; i++) {
ans = max(ans, ask(i));
}
cout << ans << endl;
return 0;
}
设第一项为x,以此求得之后的每一项,根据非负这一条件求x的范围(或者无解)
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<vector>
#include<map>
#include<queue>
#include<cstdlib>
#define N 1000010
#define LL long long
#define INF 0x3f3f3f3f
#define l(x) (x<<1)
#define r(x) ((x<<1)+1)
using namespace std;
int n,i,cnt;
LL up,down;
LL a[N],z[N];
inline int Abs(int x){return (x<0)?-x:x;}
inline void Swap(int &x,int &y){x^=y^=x^=y;}
inline LL Min(LL a,LL b){return (a<b)?a:b;}
inline LL Max(LL a,LL b){return (a>b)?a:b;}
inline int read(){
int p=0,c=getchar();
while (c<48||c>57) c=getchar();
while (c>=48&&c<=57) p=(p<<1)+(p<<3)+c-48,c=getchar();
return p;
}
int main(){
// freopen("zht.in","r",stdin);
// freopen("zht.out","w",stdout);
scanf("%d",&n);
for (i=1;i<=n;i++) scanf("%lld",&a[i]);
z[++cnt]=0;
for (i=1;i<=n;i++){
z[cnt+1]=a[i]-z[cnt]; cnt++;
}
down=-INF*2; up=INF*2;
for (i=1;i<=n+1;i++)
if (i%2) down=Max(down,-z[i]);
else up=Min(up,z[i]);
if (up>=down) cout<<up-down+1<<endl;
else cout<<"0"<<endl;
return 0;
}
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <cstring>
using namespace std;
int prime[10000005], noprime[10000005], cnt_p;
void Euler(int top) {
int i, j;
for (i = 2; i <= top; i++) {
if (!noprime[i])
prime[++cnt_p] = i;
for (j = 1; j <= cnt_p && prime[j]*i <= top; j++) {
noprime[prime[j]*i] = true;
if (i%prime[j]==0) {
break;
}
}
}
return ;
}
int gcd(int a, int b) {
if (b == 0) return a;
return gcd(b, a%b);
}
char s[100];
int get() {
scanf("%s", s);
int len = strlen(s);
int point = 0;
for (int i = 0; i < len; i++)
if (s[i] == '.') {
point = i;
break;
}
if (point == 0) {
int ans = 0;
int now = 100000;
for (int i = len - 1; i >= 0; i--) {
ans += now*(s[i]-'0');
now *= 10;
}
return ans;
} else {
int ans = 0;
int now = 100000;
for (int i = point - 1; i >= 0; i--) {
ans += now*(s[i]-'0');
now *= 10;
}
now = 10000;
for (int i = point + 1; i < len; i++) {
ans += now*(s[i]-'0');
now /= 10;
}
return ans;
}
}
int main(){
int n;
double a, b;
Euler(10000000);
noprime[1] = true;
scanf("%d", &n);
for (int i = 1; i <= n; i++) {
int aa = get();
int bb = get();
int g = gcd(aa, bb);
aa /= g; bb /= g;
if (aa == bb) {
printf("2 2\n");
continue ;
}
if (noprime[aa]||noprime[bb]) {
printf("impossible\n");
continue ;
} else {
printf("%d %d\n", aa, bb);
}
}
return 0;
}
根据题意,有且仅有斐波那契相邻两项符合要求
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<vector>
#include<map>
#include<queue>
#include<cstdlib>
#define N 100010
#define LL long long
#define INF 0x3f3f3f3f
#define l(x) (x<<1)
#define r(x) ((x<<1)+1)
using namespace std;
int n,i,flag;
int a[N],b[30*N],d[30*N];
vector <int> c[30*N];
inline int Abs(int x){return (x<0)?-x:x;}
inline void Swap(int &x,int &y){x^=y^=x^=y;}
inline int Min(int a,int b){return (a<b)?a:b;}
inline int Max(int a,int b){return (a>b)?a:b;}
inline int read(){
int p=0,c=getchar();
while (c<48||c>57) c=getchar();
while (c>=48&&c<=57) p=(p<<1)+(p<<3)+c-48,c=getchar();
return p;
}
int main(){
// freopen("zht.in","r",stdin);
// freopen("zht.out","w",stdout);
scanf("%d",&n);
for (i=1;i<=n;i++) scanf("%d",&d[i]);
a[1]=1; a[2]=2;
for (i=3;i<=30;i++) a[i]=a[i-1]+a[i-2];
for (i=1;i<=30;i++) b[a[i]]=1;
for (i=1;i<=n;i++) c[d[i]].push_back(i);
if (c[1].size()>=2){
cout<<c[1][0]<<" "<<c[1][1]<<endl;
return 0;
}
for (i=1;i<30;i++)
if (c[a[i]].size()&&c[a[i+1]].size()){
cout<<c[a[i]][0]<<" "<<c[a[i+1]][0]<<endl;
return 0;
}
cout<<"impossible"<<endl;
return 0;
}
有待填坑
#include <cstdio>
#define LL long long
const LL INF = 10000000000000000;
int main()
{
LL x, n;
scanf("%lld", &x);
int a1, a2;
bool ok = false;
for (int p=2; p<59; ++p)
{
LL s = 0;
for (int i=1; i<=INF; ++i)
{
LL pro = 1;
for (int k=0; k<p; ++k)
{
pro *= i;
if (pro > INF)
break;
}
if (pro > INF)
break;
s += pro;
if (s == x)
{
a1 = p, a2 = i;
ok = true;
goto ex;
}
}
}
ex:;
if (ok)
printf("%d %d", a1+1, a2);
else
puts("impossible");
return 0;
}
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<vector>
#include<map>
#include<queue>
#include<cstdlib>
#define LL long long
#define INF 0x3f3f3f3f
#define l(x) (x<<1)
#define r(x) ((x<<1)+1)
using namespace std;
inline int Abs(int x){return (x<0)?-x:x;}
inline void Swap(int &x,int &y){x^=y^=x^=y;}
inline int Min(int a,int b){return (a<b)?a:b;}
inline int Max(int a,int b){return (a>b)?a:b;}
inline int read(){
int p=0,c=getchar();
while (c<48||c>57) c=getchar();
while (c>=48&&c<=57) p=(p<<1)+(p<<3)+c-48,c=getchar();
return p;
}
int a[12345], b[12345];
int main(){
// freopen("zht.in","r",stdin);
// freopen("zht.out","w",stdout);
int n;
scanf("%d", &n);
for (int i=0; i<n; ++i)
scanf("%d", a+i);
for (int i=0; i<n; ++i)
scanf("%d", b+i);
if (a[0] > b[0])
return puts("0"), 0;
int dis = b[0]-a[0];
for (int i=0; i<n; ++i)
a[i] += dis;
bool ok = false, ne = false;
for (int i=0; i<n; ++i)
if (a[i] != b[i])
ne = true;
if (!ne)
return printf("%d", dis), 0;
for (int i=0; i<n; ++i)
{
if (a[i] > b[i])
{
ok = true;
break;
}
if (a[i] < b[i])
{
ok = false;
break;
}
}
printf("%d", dis+!ok);
return 0;
}
有待填坑
有待填坑
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
using namespace std;
int s[105][105];
int ans[105][105];
int map[105][105];
void clean(int a, int b) {
s[a-1][b-1] --;
s[a-1][b]--;
s[a-1][b+1] --;
s[a][b-1]--;
s[a][b] --;
s[a][b+1] --;
s[a+1][b-1]--;
s[a+1][b] --;
s[a+1][b+1] --;
}
int main()
{
int n, m;
scanf("%d%d", &n, &m);
for (int i = 1; i <= n+2; i++)
for (int j = 1; j <= m+2; j++)
scanf("%d", &s[i][j]);
for (int i = 1; i <= n+2; i++)
for (int j = 1; j <= m+2; j++) {
if (s[i][j] == 1) {
map[i+1][j+1] = 1;
clean(i+1, j+1);
}
}
for (int i = 1; i <= n+3; i++) for (int j = 1; j <= m+3; j++) {
if (s[i][j] < 0) {
printf("impossible\n");
return 0;
}
}
for (int i = 1; i <= m+3; i++) if (map[1][i]||map[n+2][i]) {
printf("impossible\n");
return 0;
}
for (int i = 1; i <= n+3; i++) if (map[i][1]||map[i][m+2]) {
printf("impossible\n");
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++)
if (map[i+1][j+1]) printf("X");
else printf(".");
cout << endl;
}
return 0;
}
首先在每两条边之间连边,边权为点权最大值,之后建一棵最小生成树,对于每次讯问,在生成树上求两点路径上边权最小值即可。
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<vector>
#include<map>
#include<queue>
#include<cstdlib>
#define N 500010
#define LL long long
#define INF 0x3f3f3f3f
#define l(x) (x<<1)
#define r(x) ((x<<1)+1)
using namespace std;
int n,m,i,cnt,x,y,X,Y,L,lsum=1,q,j;
int head[N],fa[N],f[N][20],cost[N][20],v[N],d[N];
int a[510][510],p[20];
struct Tree{
int x,y,l;
}t[N*2];
struct Edge{
int t,next,l;
}e[N*4];
vector <int> son[N];
inline int Abs(int x){return (x<0)?-x:x;}
inline void Swap(int &x,int &y){x^=y^=x^=y;}
inline int Min(int a,int b){return (a<b)?a:b;}
inline int Max(int a,int b){return (a>b)?a:b;}
inline int read(){
int p=0,c=getchar();
while (c<48||c>57) c=getchar();
while (c>=48&&c<=57) p=(p<<1)+(p<<3)+c-48,c=getchar();
return p;
}
inline int ID(int x,int y){
return (x-1)*m+y;
}
bool cmp(Tree x,Tree y){
return x.l<y.l;
}
inline int Find(int x){return (fa[x]==x)?x:fa[x]=Find(fa[x]);}
inline void Add(int s,int t,int l){
e[lsum].t=t; e[lsum].next=head[s]; e[lsum].l=l; head[s]=lsum++;
e[lsum].t=s; e[lsum].next=head[t]; e[lsum].l=l; head[t]=lsum++;
}
inline void Dfs(int x){
int i=0,s=0;
for (i=1;i<=18;i++){
f[x][i]=f[f[x][i-1]][i-1];
cost[x][i]=Max(cost[x][i-1],cost[f[x][i-1]][i-1]);
}
if (!son[x].size()) return;
for (s=son[x].size(),i=0;i<s;i++) Dfs(son[x][i]);
}
inline void Maketree(int x){
int i=0;
v[x]=1;
for (i=head[x];i;i=e[i].next){
if (v[e[i].t]) continue;
cost[e[i].t][0]=e[i].l; f[e[i].t][0]=x; d[e[i].t]=d[x]+1;
Maketree(e[i].t); son[x].push_back(e[i].t);
}
}
inline void Ready(){
int i=0,j=0,P=0,q=0,s=0;
for (i=1;i<=n;i++)
for (j=1;j<=m;j++){
if (j<m) t[++cnt]=(Tree){ID(i,j),ID(i,j+1),Max(a[i][j],a[i][j+1])};
if (i<n) t[++cnt]=(Tree){ID(i,j),ID(i+1,j),Max(a[i][j],a[i+1][j])};
}
sort(t+1,t+1+cnt,cmp);
for (i=1;i<=n*m;i++) fa[i]=i;
for (i=1;i<=cnt;i++){
P=Find(t[i].x); q=Find(t[i].y);
if (P==q) continue;
s++; fa[P]=q; Add(t[i].x,t[i].y,t[i].l);
if (s>=n*m-1) break;
}
for (i=1,p[0]=1;i<=18;i++) p[i]=p[i-1]*2;
d[1]=1; Maketree(1); Dfs(1);
}
inline int LCA(int x,int y){
int l=0,i=0; L=0;
if (d[x]<d[y]) Swap(x,y);
l=d[x]-d[y];
for (i=0;i<=18;i++)
if (l&p[i]) L=Max(L,cost[x][i]),x=f[x][i];
if (x==y) return x;
for (i=18;i>=0;i--)
if (f[x][i]!=f[y][i]){
L=Max(L,cost[x][i]),L=Max(L,cost[y][i]),x=f[x][i],y=f[y][i];
}
L=Max(L,cost[x][0]); L=Max(L,cost[y][0]);
}
int main(){
scanf("%d%d%d",&n,&m,&q);
for (i=1;i<=n;i++)
for (j=1;j<=m;j++)
scanf("%d",&a[i][j]);
Ready();
while (q--){
x=read(); y=read(); X=read(); Y=read();
if (x==X&&y==Y) {
printf("%d\n",a[x][y]);
continue;
}
x=ID(x,y); y=ID(X,Y);
LCA(x,y); printf("%d\n",L);
}
return 0;
}
A,M均为LCA+树上路径,值得补题
原文:https://www.cnblogs.com/403-forbidden/p/11149116.html