首页 > 其他 > 详细

[CERC2014] Outer space invaders

时间:2019-07-08 16:35:24      阅读:78      评论:0      收藏:0      [点我收藏+]

题目链接

题意

  你受到一群外星人的攻击,第 $i$ 个外星人会在 $ai$ 时间出现,与你的距离为 $di$,且必须在 $bi$ 时间前消灭。你有一个区域冲击波器,每次攻击可以设定一个功率 $R$,这次攻击内会消灭所有距离 $R$ 内的所有外星人,并消耗 $R$ 单位的燃料电池。求消灭所有外星人所需的最少单位的燃料电池。

分析

  由于我们可以先求出小区间内的最小花费,再合并成大区间,这是一个区间DP

  设 $f[i][j]$ 表示消灭区间 $[i,j]$ 内所有敌人(出现时间和消灭时间均在区间内),如果区间内不存在敌人,那么该值设为 $0$

  那么问题就来了,我们应该怎样枚举区间内的断点

  我们需要先找出区间内距离最远的敌人,这样就能保证得到的花费是最优的,然后我们要将两个不包含该敌人的区间合并,所以断点应该从该敌人的出现时间枚举到消灭时间

  于是可以得到状态转移方程( $x$ 为区间内距离最远的敌人) $$f[i][j]=min(f[i][j],f[i][k]+d[x]+f[k+1][j])$$

  还有因为时间的范围比较大,开二维数组会MLE,所以要把时间点离散化

技术分享图片
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 305

int T, n;
int a[N], b[N], d[N], f[2 * N][2 * N];
int q[2 * N], qn;

int main() {
    scanf("%d", &T);
    while (T--) {
        qn = 0;
        scanf("%d", &n);
        for (int i = 1; i <= n; i++) {
            scanf("%d%d%d", a + i, b + i, d + i);
            q[++qn] = a[i]; q[++qn] = b[i];
        }
        sort(q + 1, q + qn + 1);
        qn = unique(q + 1, q + qn + 1) - q - 1;
        for (int i = 1; i <= n; i++) {
            a[i] = lower_bound(q + 1, q + qn + 1, a[i]) - q;
            b[i] = lower_bound(q + 1, q + qn + 1, b[i]) - q;
        }
        memset(f, 0x3f, sizeof f);
        for (int l = 1; l <= qn; l++)
            for (int i = 1; i + l - 1 <= qn; i++) {
                int j = i + l - 1, x = 0;
                for (int k = 1; k <= n; k++)
                    if (i <= a[k] && b[k] <= j && d[k] > d[x]) x = k;
                if (!x) {f[i][j] = 0; continue;}
                for (int k = a[x]; k <= b[x]; k++)
                    f[i][j] = min(f[i][j], f[i][k - 1] + d[x] + f[k + 1][j]);
            }
        printf("%d\n", f[1][qn]);
    }

    return 0;
}
View Code

[CERC2014] Outer space invaders

原文:https://www.cnblogs.com/Pedesis/p/11047931.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!