首页 > 其他 > 详细

斐波那契函数的应用

时间:2014-08-14 15:58:58      阅读:311      评论:0      收藏:0      [点我收藏+]

  题目:一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙上一次n级的台阶总共有多少种跳法?

分析:首先考虑最简单的额情况。如果只有1级台阶,那显然只有一种跳法;如果有2级台阶,那就有两种跳法;跳一级再跳一级;一次性跳到第2级;

  接下来讨论一般情况,把n级台阶时的跳法看成是n的函数;记作f(n)。当n > 2时,第一次跳的时候有两种不同的选择:一是第一次只跳1级,此时跳法数目等于后面剩下的n-1级台阶的数目;即为f(n-1); 另一种选择是第一次跳2级,此时跳法数目等于后面剩下的n-2级数台阶数目,即为f(n-2);因此n级台阶的不同跳法的总数f(n)=f(n-1)+f(n-2).

分析到这里,不难看出这实际就是斐波那契数列了;

 

斐波那契函数的应用,布布扣,bubuko.com

斐波那契函数的应用

原文:http://www.cnblogs.com/chris-cp/p/3912362.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!