首页 > 其他 > 详细

Value Iteration Algorithm for MDP

时间:2019-07-19 11:19:38      阅读:61      评论:0      收藏:0      [点我收藏+]

Value-Iteration Algorithm:

For each iteration k+1:

  a. calculate the optimal state-value function for all s∈S;

  b. untill algorithm converges.

end up with an optimal state-value function

 

Optimal State-Value Function

As mentioned on the previous post, the method to pick up Optimal State-Value Function is shown below. From state s, we have multiple possible actions, what we will do is choose the best combination of immediate reward and state-value function from the next state.

技术分享图片

Example for a grid game, it is quite like information propagate from the terminal states backward:

技术分享图片

 

From State-Value Function to Policy

After we‘ve got the Optimal State-Value Function, the Optimal Policy can be aquired by maxmizing the Action-Value Function. This means we try all possible actions from state s, and then choose the one that has the maximum reward.

技术分享图片

Value Iteration Algorithm for MDP

原文:https://www.cnblogs.com/rhyswang/p/11206150.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!