什么是线程池
为什么使用线程池
线程池的优势
第一:降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。
第二:提高响应速度。当任务到达时,任务可以不需要的等到线程创建就能立即执行。
第三:提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。但是要做到合理的利用线程池,必须对其原理了如指掌。
1 public class Demo { 2 3 public static void main(String[] args) { 4 ExecutorService pool = Executors.newFixedThreadPool(10); 5 while (true){ 6 pool.execute(new Runnable() { 7 @Override 8 public void run() { 9 System.out.println(Thread.currentThread().getName()); 10 try { 11 Thread.sleep(100); 12 } catch (InterruptedException e) { 13 e.printStackTrace(); 14 } 15 } 16 }); 17 } 18 } 19 }
corePoolSize : 线程池的基本大小,当提交一个任务到线程池时,线程池会创建一个线程来执行任务,即使其他空闲的基本线程能够执行新任务也会创建线程,等到需要执行的任务数大于线程池基本大小时就不再创建。如果调用了线程池的prestartAllCoreThreads方法,线程池会提前创建并启动所有基本线程。
runnableTaskQueue:任务对列,用于保存等待执行的任务的阻塞队列。可以选择以下几个阻塞队列。
ArrayBlockingQueue:是一个基于数组结构的有界阻塞队列,此队列按 FIFO(先进先出)原则对元素进行排序。
LinkedBlockingQueue:一个基于链表结构的阻塞队列,此队列按FIFO (先进先出) 排序元素,吞吐量通常要高于ArrayBlockingQueue。静态工厂方法Executors.newFixedThreadPool()使用了这个队列。
SynchronousQueue:一个不存储元素的阻塞队列。每个插入操作必须等到另一个线程调用移除操作,否则插入操作一直处于阻塞状态,吞吐量通常要高于LinkedBlockingQueue,静态工厂方法Executors.newCachedThreadPool使用了这个队列。
PriorityBlockingQueue:一个具有优先级得无限阻塞队列。
maximumPoolSize:线程池最大大小,线程池允许创建的最大线程数。如果队列满了,并且已创建的线程数小于最大线程数,则线程池会再创建新的线程执行任务。值得注意的是如果使用了无界的任务队列这个参数就没什么效果。
ThreadFactory:用于设置创建线程的工厂,可以通过线程工厂给每个创建出来的线程设置更有意义的名字,Debug和定位问题时非常又帮助。
RejectedExecutionHandler(饱和策略):当队列和线程池都满了,说明线程池处于饱和状态,那么必须采取一种策略处理提交的新任务。这个策略默认情况下是AbortPolicy,表示无法处理新任务时抛出异常。
CallerRunsPolicy:只用调用者所在线程来运行任务。
DiscardOldestPolicy:丢弃队列里最近的一个任务,并执行当前任务。
DiscardPolicy:不处理,丢弃掉。
当然也可以根据应用场景需要来实现RejectedExecutionHandler接口自定义策略。如记录日志或持久化不能处理的任务。
keepAliveTime :线程活动保持时间,线程池的工作线程空闲后,保持存活的时间。所以如果任务很多,并且每个任务执行的时间比较短,可以调大这个时间,提高线程的利用率。
TimeUnit:线程活动保持时间的单位,可选的单位有天(DAYS),小时(HOURS),分钟(MINUTES),毫秒(MILLISECONDS),微秒(MICROSECONDS, 千分之一毫秒)和毫微秒(NANOSECONDS, 千分之一微秒)。
?
// 线程池的控制状态:用来表示线程池的运行状态(整型的高3位)和运行的worker数量(低29位)
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
// 29位的偏移量
private static final int COUNT_BITS = Integer.SIZE - 3;
// 最大容量(2^29 - 1)
private static final int CAPACITY = (1 << COUNT_BITS) - 1;
?
// runState is stored in the high-order bits
// 线程运行状态,总共有5个状态,需要3位来表示(所以偏移量的29 = 32 - 3)
/**
* RUNNING : 接受新任务并且处理已经进入阻塞队列的任务
* SHUTDOWN : 不接受新任务,但是处理已经进入阻塞队列的任务
* STOP : 不接受新任务,不处理已经进入阻塞队列的任务并且中断正在运行的任务
* TIDYING : 所有的任务都已经终止,workerCount为0, 线程转化为TIDYING状态并且调用terminated钩子函数
* TERMINATED: terminated钩子函数已经运行完成
**/
private static final int RUNNING = -1 << COUNT_BITS;
private static final int SHUTDOWN = 0 << COUNT_BITS;
private static final int STOP = 1 << COUNT_BITS;
private static final int TIDYING = 2 << COUNT_BITS;
private static final int TERMINATED = 3 << COUNT_BITS;
// 阻塞队列
private final BlockingQueue<Runnable> workQueue;
// 可重入锁
private final ReentrantLock mainLock = new ReentrantLock();
// 存放工作线程集合
private final HashSet<Worker> workers = new HashSet<Worker>();
// 终止条件
private final Condition termination = mainLock.newCondition();
// 最大线程池容量
private int largestPoolSize;
// 已完成任务数量
private long completedTaskCount;
// 线程工厂
private volatile ThreadFactory threadFactory;
// 拒绝执行处理器
private volatile RejectedExecutionHandler handler;
// 线程等待运行时间
private volatile long keepAliveTime;
// 是否运行核心线程超时
private volatile boolean allowCoreThreadTimeOut;
// 核心池的大小
private volatile int corePoolSize;
// 最大线程池大小
private volatile int maximumPoolSize;
// 默认拒绝执行处理器
private static final RejectedExecutionHandler defaultHandler =
new AbortPolicy();
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler) {
if (corePoolSize < 0 || // 核心大小不能小于0
maximumPoolSize <= 0 || // 线程池的初始最大容量不能小于0
maximumPoolSize < corePoolSize || // 初始最大容量不能小于核心大小
keepAliveTime < 0) // keepAliveTime不能小于0
throw new IllegalArgumentException();
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
// 初始化相应的域
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;
}
/*
* 进行下面三步
*
* 1. 如果运行的线程小于corePoolSize,则尝试使用用户定义的Runnalbe对象创建一个新的线程
* 调用addWorker函数会原子性的检查runState和workCount,通过返回false来防止在不应
* 该添加线程时添加了线程
* 2. 如果一个任务能够成功入队列,在添加一个线城时仍需要进行双重检查(因为在前一次检查后
* 该线程死亡了),或者当进入到此方法时,线程池已经shutdown了,所以需要再次检查状态,
* 若有必要,当停止时还需要回滚入队列操作,或者当线程池没有线程时需要创建一个新线程
* 3. 如果无法入队列,那么需要增加一个新线程,如果此操作失败,那么就意味着线程池已经shut
* down或者已经饱和了,所以拒绝任务
*/
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
// 获取线程池控制状态
int c = ctl.get();
if (workerCountOf(c) < corePoolSize) { // worker数量小于corePoolSize
if (addWorker(command, true)) // 添加worker
// 成功则返回
return;
// 不成功则再次获取线程池控制状态
c = ctl.get();
}
// 线程池处于RUNNING状态,将用户自定义的Runnable对象添加进workQueue队列
if (isRunning(c) && workQueue.offer(command)) {
// 再次检查,获取线程池控制状态
int recheck = ctl.get();
// 线程池不处于RUNNING状态,将自定义任务从workQueue队列中移除
if (! isRunning(recheck) && remove(command))
// 拒绝执行命令
reject(command);
else if (workerCountOf(recheck) == 0) // worker数量等于0
// 添加worker
addWorker(null, false);
}
else if (!addWorker(command, false)) // 添加worker失败
// 拒绝执行命令
reject(command);
}
原子性的增加workerCount。
将用户给定的任务封装成为一个worker,并将此worker添加进workers集合中。
启动worker对应的线程,并启动该线程,运行worker的run方法。
回滚worker的创建动作,即将worker从workers集合中删除,并原子性的减少workerCount。
private boolean addWorker(Runnable firstTask, boolean core) {
retry:
for (;;) { // 外层无限循环
// 获取线程池控制状态
int c = ctl.get();
// 获取状态
int rs = runStateOf(c);
?
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN && // 状态大于等于SHUTDOWN,初始的ctl为RUNNING,小于SHUTDOWN
! (rs == SHUTDOWN && // 状态为SHUTDOWN
firstTask == null && // 第一个任务为null
! workQueue.isEmpty())) // worker队列不为空
// 返回
return false;
?
for (;;) {
// worker数量
int wc = workerCountOf(c);
if (wc >= CAPACITY || // worker数量大于等于最大容量
wc >= (core ? corePoolSize : maximumPoolSize)) // worker数量大于等于核心线程池大小或者最大线程池大小
return false;
if (compareAndIncrementWorkerCount(c)) // 比较并增加worker的数量
// 跳出外层循环
break retry;
// 获取线程池控制状态
c = ctl.get(); // Re-read ctl
if (runStateOf(c) != rs) // 此次的状态与上次获取的状态不相同
// 跳过剩余部分,继续循环
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
}
?
// worker开始标识
boolean workerStarted = false;
// worker被添加标识
boolean workerAdded = false;
//
Worker w = null;
try {
// 初始化worker
w = new Worker(firstTask);
// 获取worker对应的线程
final Thread t = w.thread;
if (t != null) { // 线程不为null
// 线程池锁
final ReentrantLock mainLock = this.mainLock;
// 获取锁
mainLock.lock();
try {
// Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
// 线程池的运行状态
int rs = runStateOf(ctl.get());
?
if (rs < SHUTDOWN || // 小于SHUTDOWN
(rs == SHUTDOWN && firstTask == null)) { // 等于SHUTDOWN并且firstTask为null
if (t.isAlive()) // precheck that t is startable // 线程刚添加进来,还未启动就存活
// 抛出线程状态异常
throw new IllegalThreadStateException();
// 将worker添加到worker集合
workers.add(w);
// 获取worker集合的大小
int s = workers.size();