首页 > 其他 > 详细

tensorboard使用

时间:2019-07-22 13:31:27      阅读:96      评论:0      收藏:0      [点我收藏+]
import tensorflow as tf
import numpy as np

## prepare the original data
with tf.name_scope(data):
     x_data = np.random.rand(100).astype(np.float32)
     y_data = 0.3*x_data+0.1
##creat parameters
with tf.name_scope(parameters):
     with tf.name_scope(weights):
         weight = tf.Variable(tf.random_uniform([1],-1.0,1.0))
         tf.summary.histogram(weight,weight)
     with tf.name_scope(biases):
         bias = tf.Variable(tf.zeros([1]))
         tf.summary.histogram(bias,bias)
##get y_prediction
with tf.name_scope(y_prediction):
     y_prediction = weight*x_data+bias
##compute the loss
with tf.name_scope(loss):
     loss = tf.reduce_mean(tf.square(y_data-y_prediction))
     tf.summary.scalar(loss,loss)
##creat optimizer
optimizer = tf.train.GradientDescentOptimizer(0.5)
#creat train ,minimize the loss
with tf.name_scope(train):
     train = optimizer.minimize(loss)
#creat init
with tf.name_scope(init):
     init = tf.global_variables_initializer()
##creat a Session
sess = tf.Session()
#merged
merged = tf.summary.merge_all()
##initialize
writer = tf.summary.FileWriter("logs/", sess.graph)
sess.run(init)
## Loop
for step  in  range(101):
    sess.run(train)
    rs=sess.run(merged)
    writer.add_summary(rs, step)

 

 

仅用作记录

localhost:6006

tensorboard使用

原文:https://www.cnblogs.com/ziytong/p/11225115.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!