首页 > 其他 > 详细

基于内容的推荐例子(电影推荐)

时间:2019-07-24 09:18:17      阅读:237      评论:0      收藏:0      [点我收藏+]

推荐例子介绍

根据典型关键数据

导演

演员

关键字

题材

‘keywords‘, ‘cast‘, ‘genres‘, ‘director

构造自然语言的组合特征,利用CountVectorizer计算每个词出现的次数,作为特征向量,

使用余弦相似性构造所有电影之间的相似性。

 

代码

https://github.com/fanqingsong/Content-based-Recommandation-Engine

import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.metrics.pairwise import cosine_similarity


def get_title_from_index(index):
    return df[df.index == index]["title"].values[0]


def get_index_from_title(title):
    return df[df.title == title]["index"].values[0]


# Reading CSV File
df = pd.read_csv("movie_dataset_content.csv", encoding=utf-8)


# Selecting Features
features = [keywords, cast, genres, director]

# Creating a column in DF which combines all selected features
for feature in features:
    df[feature] = df[feature].fillna(‘‘)


def combine_features(row):
    return row[keywords] + " " + row[cast] + " " + row["genres"] + " " + row["director"]


df["combined_features"] = df.apply(combine_features, axis=1)

# making an object of CountVectorizer class to create count matrix
cv = CountVectorizer()

# Creating count matrix from this new combined column
count_matrix = cv.fit_transform(df["combined_features"])

# Computing the Cosine Similarity based on the count_matrix
cosine_sim = cosine_similarity(count_matrix)

movie_liked_by_user = "Thor"

# Getting index of this movie from its title
liked_movie_index = get_index_from_title(movie_liked_by_user)

similar_movies = list(enumerate(cosine_sim[liked_movie_index]))

# Get a list of similar movies in descending order of similarity score
predictions = sorted(similar_movies, key=lambda x: x[1], reverse=True)

# Print titles of 10 predicted movies
i = 0
for movie in predictions:
    print(get_title_from_index(movie[0]))
    i = i+1
    if i > 10:
        break

 

运行

root@DESKTOP-OGSLB14:~/mine/Content-based-Recommandation-Engine# python3 content_based_recommender.py
Thor
Thor: The Dark World
The Avengers
Captain America: The Winter Soldier
Avengers: Age of Ultron
Captain America: Civil War
Pirates of the Caribbean: Dead Man‘s Chest
Cinderella
Jack Ryan: Shadow Recruit
The Amazing Spider-Man 2
Captain America: The First Avenger
root@DESKTOP-OGSLB14:~/mine/Content-based-Recommandation-Engine#

 

基于内容的推荐例子(电影推荐)

原文:https://www.cnblogs.com/lightsong/p/11235333.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!