首页 > 其他 > 详细

nonparametric method|One-Mean t-Interval Procedure|

时间:2019-07-28 21:40:42      阅读:101      评论:0      收藏:0      [点我收藏+]

8.4 Confidence Intervals for One Population Mean When σ Is Unknown

原先是 standardized version of x bar:

技术分享图片

 

当没有提供population 的标准差时,采用S(样本标准差作为population 标准差),即studentized version of x bar

技术分享图片

 

 

技术分享图片

t-Distributions and t-Curves

技术分享图片

 

技术分享图片

 

 t-curves have more spread than the standard normal curve. This property follows from the fact that, for a t-curve with ν (pronounced “new”) degrees of freedom, where ν > 2, the standard deviation is √ν/(ν − 2). This quantity always exceeds 1, which is the standard deviation of the standard normal curve

 所以自由度越大,标准差越大,图像更分散

使用t-value:

查表:得到自由度为13且右边面积为0.05的t值

技术分享图片

 

技术分享图片

 

 基于没有population任何数据得到sample mean的置信区间:One-Mean t-Interval Procedure

技术分享图片

关于离群值:

In particular, the t-interval procedure is robust to moderate violations of the normality assumption but, even for large samples, can sometimes be unduly affected by outliers because the sample mean and sample standard deviation are not resistant to outliers,所以要先做the normal probability plot 看看有无outlier:

技术分享图片

成正比,所以判断没有outlier:查表:

技术分享图片

如果data中有outlier,则:

技术分享图片

What If the Assumptions Are Not Satisfied?

如果样本不是正态分布

技术分享图片

 

 

nonparametric method:

Recall that descriptive measures for a population, such as μ and σ, are called parameters. Technically, inferential methods concerned with parameters are called parametric methods; those that are not are called nonparametric methods. However, common practice is to refer to most methods that can be applied without assuming normality (regardless of sample size) as nonparametric. Thus the term nonparametric method as used in contemporary statistics is somewhat of a misnomer.

非参数法没有参数,但是不精准;而参数法参数多,比较精准

Wilcoxon confidence-interval procedure

nonparametric method|One-Mean t-Interval Procedure|

原文:https://www.cnblogs.com/yuanjingnan/p/11260974.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!