题目链接:\(NOI2010\)超级钢琴
这一题的核心在于后面的\(ST\)表上,前面的化简我会写的简单点。
枚举一个\(pos\),求出从\(pos\)往后长度为\(l\)到\(r\)的段的和。
前缀和维护,\(ST\)表维护最大值即可。
但是我们要求出前\(k\)大,考虑我们取出了\(l\)到\(r\)的最大值,位置为\(p\),那么次小值一定存在与\(l\)到\(p-1\)或\(p+1\)到\(r\)间。
就可以做子问题了。
#include<bits/stdc++.h>
using namespace std;
#define int long long
inline int read()
{
int f=1,w=0;char x=0;
while(x<'0'||x>'9') {if(x=='-') f=-1; x=getchar();}
while(x!=EOF&&x>='0'&&x<='9') {w=(w<<3)+(w<<1)+(x^48);x=getchar();}
return w*f;
}
const int N=500010;
int n,k,l,r,ans;
int sum[N],id[N][25],f[N][25];
struct Group
{
int from,lef,rig,max;
bool operator <(Group y) const
{
return sum[max]-sum[from-1]<sum[y.max]-sum[y.from-1];
}
};
priority_queue<Group> Q;
inline int Ask(int x,int y)
{
int s=log2(y-x+1);
return f[x][s]>f[y-(1<<s)+1][s]?id[x][s]:id[y-(1<<s)+1][s];
}
main(){
#ifndef ONLINE_JUDGE
freopen("A.in","r",stdin);
#endif
n=read(),k=read(),l=read(),r=read();
for(int i=1;i<=n;i++)
{
sum[i]=sum[i-1]+read();
f[i][0]=sum[i];
id[i][0]=i;
}
for(int j=1;j<=21;j++)
for(int i=1;i+(1<<j)-1<=n;i++)
if(f[i][j-1]>f[i+(1<<(j-1))][j-1])
f[i][j]=f[i][j-1],id[i][j]=id[i][j-1];
else f[i][j]=f[i+(1<<(j-1))][j-1],id[i][j]=id[i+(1<<(j-1))][j-1];
for(int i=1;i<=n;i++)
if(i+l-1<=n)
Q.push(Group{i,i+l-1,min(i+r-1,n),Ask(i+l-1,min(i+r-1,n))});
while(k--)
{
Group Now=Q.top();Q.pop();
ans+=sum[Now.max]-sum[Now.from-1];
if(Now.lef!=Now.max)
Q.push(Group{Now.from,Now.lef,Now.max-1,Ask(Now.lef,Now.max-1)});
if(Now.rig!=Now.max)
Q.push(Group{Now.from,Now.max+1,Now.rig,Ask(Now.max+1,Now.rig)});
}
printf("%lld",ans);
}
原文:https://www.cnblogs.com/wo-shi-zhen-de-cai/p/11274125.html