功能:tf.variable_scope
可以让不同命名空间中的变量取相同的名字,无论tf.get_variable
或者tf.Variable
生成的变量
TensorFlow链接:https://tensorflow.google.cn/api_docs/python/tf/variable_scope?hl=en
举例:
with tf.variable_scope(‘V1‘): a1 = tf.get_variable(name=‘a1‘, shape=[1], initializer=tf.constant_initializer(1)) a2 = tf.Variable(tf.random_normal(shape=[2, 3], mean=0, stddev=1), name=‘a2‘) with tf.variable_scope(‘V2‘): a3 = tf.get_variable(name=‘a1‘, shape=[1], initializer=tf.constant_initializer(1)) a4 = tf.Variable(tf.random_normal(shape=[2, 3], mean=0, stddev=1), name=‘a2‘) with tf.Session() as sess: sess.run(tf.initialize_all_variables()) print(a1.name) print(a2.name) print(a3.name) print(a4.name)
with tf.variable_scope("foo"): v = tf.get_variable("v", [1]) with tf.variable_scope("foo", reuse=True): v1 = tf.get_variable("v", [1]) assert v1 == v #不报错
功能:tf.name_scope具有类似的功能,但只限于tf.Variable生成的变量
TensorFlow链接:https://tensorflow.google.cn/api_docs/python/tf/name_scope?hl=en
with tf.name_scope(‘V1‘): a1 = tf.get_variable(name=‘a1‘, shape=[1], initializer=tf.constant_initializer(1)) a2 = tf.Variable(tf.random_normal(shape=[2, 3], mean=0, stddev=1), name=‘a2‘) with tf.name_scope(‘V2‘): a3 = tf.get_variable(name=‘a1‘, shape=[1], initializer=tf.constant_initializer(1)) a4 = tf.Variable(tf.random_normal(shape=[2, 3], mean=0, stddev=1), name=‘a2‘) with tf.Session() as sess: sess.run(tf.initialize_all_variables()) print(a1.name) print(a2.name) print(a3.name) print(a4.name)
a1,a3会报错:ValueError: Variable a1 already exists, disallowed. Did you mean to set reuse=True or reuse=tf.AUTO_REUSE in VarScope? Originally defined at:
参考文献:
【1】tf.variable_scope和tf.name_scope的用法
tf.variable_scope和tf.name_scope
原文:https://www.cnblogs.com/nxf-rabbit75/p/11277076.html