1. 读写文件(基本)
savetxt、loadtxt
i2 = np.eye(2) print(i2) np.savetxt(r"C:\Users\Thomas\Desktop\eye.txt",i2) c,v = np.loadtxt(r"C:\Users\Thomas\Desktop\data.csv",delimiter=‘,‘,usecols=(6,7),unpack=True) print(c,v) #[336.1 339.32 345.03 344.32 343.44 346.5 351.88 355.2 358.16 354.54 # 356.85 359.18 359.9 363.13 358.3 350.56 338.61 342.62 342.88 348.16 # 353.21 349.31 352.12 359.56 360. 355.36 355.76 352.47 346.67 351.99] [21144800. 13473000. 15236800. 9242600. 14064100. 11494200. 17322100. # 13608500. 17240800. 33162400. 13127500. 11086200. 10149000. 17184100. # 18949000. 29144500. 31162200. 23994700. 17853500. 13572000. 14395400. # 16290300. 21521000. 17885200. 16188000. 19504300. 12718000. 16192700. # 18138800. 16824200.]
delimiter=用什么进行分隔符,一般csv文件都是逗号
usecols=6,7,表示获取第七和第八字段数据,也就是股票的收盘价和成交量。
unpack变量为真:拆分存储不同列的数据,即分别将收盘价和成交量的数据赋值给c和v,也就是分开显示的意思。
2. 加权平均价格:average
VWAP
import numpy as np # 加权平均价格 c,v = np.loadtxt(r"C:\Users\Thomas\Desktop\data.csv",delimiter=‘,‘,usecols=(6,7),unpack=True) vwap = np.average(c,weights=v) print("VWAP = ", vwap) #VWAP = 350.5895493532009
3. 算术平均值:mean
import numpy as np # 加权平均价格 c,v = np.loadtxt(r"C:\Users\Thomas\Desktop\data.csv",delimiter=‘,‘,usecols=(6,7),unpack=True) mean = np.mean(c) print("mean = ", mean) #mean = 351.0376666666667
4. 时间加权平均价格:
TWAP
import numpy as np # 加权平均价格 c,v = np.loadtxt(r"C:\Users\Thomas\Desktop\data.csv",delimiter=‘,‘,usecols=(6,7),unpack=True) t = np.arange(len(c)) twap = np.average(c,weights=t) print("twap = ", twap) #twap = 352.4283218390804
5. 最大值、最小值、极差值
max、min、ptp:
import numpy as np # 最大值、最小值、极差值 h,l = np.loadtxt(r"C:\Users\Thomas\Desktop\data.csv",delimiter=‘,‘,usecols=(4,5),unpack=True) highest = np.max(h) lowest = np.min(l) spread_highest = np.ptp(h) spread_lowest = np.ptp(l) print("highest = ", highest) print("lowest = ", lowest) print("spread_highest = ", spread_highest) print("spread_lowest = ", spread_lowest) #highest = 364.9 #lowest = 333.53 #spread_highest = 24.859999999999957 #spread_lowest = 26.970000000000027
6. 中位数:median
排序函数:msort
方差:var
标准差:std
import numpy as np # 中位数 c = np.loadtxt(r"C:\Users\Thomas\Desktop\data.csv",delimiter=‘,‘,usecols=(6,),unpack=True) print("median = ",np.median(c)) # 排序函数 print("sorted_close = ",np.msort(c)) # 方差函数 print("var = ",np.var(c)) # 标准差函数 print("std = ",np.std(c)) #median = 352.055 #sorted_close = [336.1 338.61 339.32 342.62 342.88 343.44 344.32 345.03 346.5 346.67 # 348.16 349.31 350.56 351.88 351.99 352.12 352.47 353.21 354.54 355.2 # 355.36 355.76 356.85 358.16 358.3 359.18 359.56 359.9 360. 363.13] #var = 50.126517888888884 #std = 7.080008325481608
7. 差分函数:diff
条件选择函数:where
# 差分函数 c = np.loadtxt(r"C:\Users\Thomas\Desktop\data.csv",delimiter=‘,‘,usecols=(6,),unpack=True) print("diff = ",np.diff(c)) # 条件选择函数 print("price > 0",np.where(c > 0)) #diff = [ 3.22 5.71 -0.71 -0.88 3.06 5.38 3.32 2.96 -3.62 2.31 # 2.33 0.72 3.23 -4.83 -7.74 -11.95 4.01 0.26 5.28 5.05 # -3.9 2.81 7.44 0.44 -4.64 0.4 -3.29 -5.8 5.32] #price > 0 (array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, # 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29], dtype=int64),)
8. 日期分析:
import numpy as np from datetime import datetime def datestr2num(s): return datetime.strptime(s.decode(‘ascii‘), "%d-%m-%Y").date().weekday() dates, close=np.loadtxt(r"C:\Users\Thomas\Desktop\data.csv", delimiter=‘,‘, usecols=(1,6), converters={1: datestr2num}, unpack=True) print("dates = ",dates) #dates = [4. 0. 1. 2. 3. 4. 0. 1. 2. 3. 4. 0. 1. 2. 3. 4. 1. 2. 3. 4. 0. 1. 2. 3. # 4. 0. 1. 2. 3. 4.]
注意:这里的s要解析ascii码
9. summarize函数:对轴或者维度的编号进行定义
apply_along_axis:这个函数会调用另外一个有我们给出的函数,作用于每一个数组元素上。目前我们的数组总有3个元素,分别用于示例数据总的3个星期,元素中的索引值对应于实例数据中的1天。
23
1
23
Python笔记_第五篇_Python数据分析基础教程_文件的读写
原文:https://www.cnblogs.com/noah0532/p/11273611.html