Let f(x) be the number of zeroes at the end of x!. (Recall that x! = 1 * 2 * 3 * ... * x, and by convention, 0! = 1.)
For example, f(3) = 0 because 3! = 6 has no zeroes at the end, while f(11) = 2 because 11! = 39916800 has 2 zeroes at the end. Given K, find how many non-negative integers x have the property that f(x) = K.
Example 1:
Input: K = 0
Output: 5
Explanation: 0!, 1!, 2!, 3!, and 4! end with K = 0 zeroes.
Example 2:
Input: K = 5
Output: 0
Explanation: There is no x such that x! ends in K = 5 zeroes.
Note:
K will be an integer in the range [0, 10^9].
借助上一题的思路来做,显然阶乘的0的个数每隔5个数变化一次(0~4,5~9……),本题需要找到是否存在N,f(N)=K,如果存在则返回5,不存在返回0。根据数学推导N>=4K,从4K开始,每次递增5,直到f(N)>=K。
class Solution(object): def preimageSizeFZF(self, K): """ :type K: int :rtype: int """ # either 5 or 0 def getZeroes(n): return 0 if n < 5 else n/5 + getZeroes(n/5) start = 4*K zeroes = getZeroes(start) while zeroes < K: start += 5 zeroes = getZeroes(start) return 5 if zeroes == K else 0
LeetCode in Python 793. Preimage Size of Factorial Zeroes Function
原文:https://www.cnblogs.com/lowkeysingsing/p/11285690.html