首页 > 其他 > 详细

数据集格式

时间:2019-08-02 22:50:03      阅读:73      评论:0      收藏:0      [点我收藏+]

1、xml

使用labelmg工具对图片进行标注得到xml格式文件,以图片为例介绍内容信息:

技术分享图片

对上面的图片进行标注后,得到xml文件:

技术分享图片

其内容分类两部分:

  1. 第一个黑色方框,图像的整体部分,包括图像的名称、位置、长宽高等等;
  2. 第二个黑色方框,标注框信息,每个红色框就是一个object标签(表示一个标注框)的信息,包括目标类别名称、位置信息等

xml内的信息是由一个个对象组成,标签之间存在层级关系,例如annotation为最上层的标签,就是这个xml所在的文件夹,其他标签为字标签。

2、xml -> csv

字符(逗号)分割值。

每个object标签代表一个标注框,都会在csv文件中生成一条数据,每天数据的属性为:图片文件名、宽度、高度、类别、框的左上角x坐标、框的左上角y、框的右上角x、框的右上角y。

xml转csv的代码如下:

# -*- coding: utf-8 -*-
"""
将文件夹内所有XML文件的信息记录到CSV文件中
"""

import os  
import glob  
import pandas as pd  
import xml.etree.ElementTree as ET  

  
def xml_to_csv(path):          #path:annotations的文件夹路径
    xml_list = []  
    for xml_file in glob.glob(path + /*.xml):  #对path目录下的每一个xml文件
        tree = ET.parse(xml_file)  #获得xml对应的解析树
        root = tree.getroot()  #获得根标签annotations
        # print(root)  
        print(root.find(filename).text)  
        for member in root.findall(object):  #对每一个object标签(框)
            value = (root.find(filename).text,  #在根标签下查找filename标签(图片文件名字),获得文本信息
                     int(root.find(size)[0].text),  #在根标签下找size标签,并获得第0个字标签(width)的文本信息,转化为int
                     int(root.find(size)[1].text),   #在根标签下找size标签,并获得di1个字标签(height)的文本信息,转化为int
                     member[0].text,  #获得object标签的第0个字标签name的文信息
                     int(member[4][0].text),  #获得object的第四个子标签bndbox,获得bndbox的第0个字标签(xmin)的文本信息,转化为int
                     int(float(member[4][1].text)),  #获得object的第四个子标签bndbox,获得bndbox的第1个字标签(ymin)的文本信息,转化为int
                     int(member[4][2].text),  #获得object的第四个子标签bndbox,获得bndbox的第2个字标签(xmax)的文本信息,转化为int
                     int(member[4][3].text)  #获得object的第四个子标签bndbox,获得bndbox的第3个字标签(ymax)的文本信息,转化为int
                     )  
            xml_list.append(value)  
    column_name = [filename, width, height, class, xmin, ymin, xmax, ymax]  
    xml_df = pd.DataFrame(xml_list, columns=column_name)  
    return xml_df  
  
def main():  
    for directory in [train,test,validation]:  #对应train和test文件夹
        #对应根目录下的/images中的train和test文件夹,本脚本要放在voc文件夹下,和annotations是同级的,否则修改getcwd函数
        xml_path = os.path.join(os.getcwd(), annotations/{}.format(directory))   
        xml_df = xml_to_csv(xml_path)  
        xml_df.to_csv(data/whsyxt_{}_labels.csv.format(directory), index=None)  #xml转化为对应的csv保存
        print(Successfully converted xml to csv.)  

main()

对应的xml文件如下图:

技术分享图片

最后得到两个文件:

技术分享图片

3、xml转换为tfrecord

 每个图片会生成一个xml文件,批量的将xml文件转化成tfrecord格式。

 

4、csv转换成tfrecord

将多个xml文件写入到一个csv文件中去,每一行是一个xml文件的信息,接下来直接将这个歌csv文件转换成tfrecord格式就可以了,很方便快。

由于图像和标签值不在一起,所以要将整张图片信息和csv文件合并起来,整合成为tfrecord格式写入到本地中,用于训练。

代码来自tensorflow/object_dection/models-master/research/object_detection/test_generate_tfrecord.py:

"""
Usage:
  # From tensorflow/models/
  # Create train data:
  python generate_tfrecord.py --csv_input=data/train_labels.csv  --output_path=data/train.record

  # Create test data:
  python generate_tfrecord.py --csv_input=data/test_labels.csv  --output_path=data/test.record
"""
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import

import os
import io
import pandas as pd
import tensorflow as tf

from PIL import Image
from object_detection.utils import dataset_util
from collections import namedtuple, OrderedDict

flags = tf.app.flags
flags.DEFINE_string(csv_input, data/test_labels.csv, Path to the CSV input)
flags.DEFINE_string(output_path, data/test.record, Path to output TFRecord)
FLAGS = flags.FLAGS


# TO-DO replace this with label map
# 修改成你自己的标签
def class_text_to_int(row_label):
    if row_label == face:
        return 0
    elif row_label == cat:
        return 1
    #............
        

def split(df, group):
    data = namedtuple(data, [filename, object])
    gb = df.groupby(group)
    return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)]

#读取每张图片,得到每张图片的信息,将每张图片信息和图片里的object标注框信息合并在一起
def create_tf_example(group, path):
    with tf.gfile.GFile(os.path.join(path, {}.format(group.filename)), rb) as fid:
        encoded_jpg = fid.read()
    encoded_jpg_io = io.BytesIO(encoded_jpg)
    image = Image.open(encoded_jpg_io)
    width, height = image.size

    filename = group.filename.encode(utf8)
    image_format = bjpg
    xmins = []
    xmaxs = []
    ymins = []
    ymaxs = []
    classes_text = []
    classes = []

    for index, row in group.object.iterrows():
        xmins.append(row[xmin] / width)
        xmaxs.append(row[xmax] / width)
        ymins.append(row[ymin] / height)
        ymaxs.append(row[ymax] / height)
        classes_text.append(row[class].encode(utf8))
        classes.append(class_text_to_int(row[class]))
    #图像所有信息encoded_jpg和object信息整合一起
    tf_example = tf.train.Example(features=tf.train.Features(feature={
        image/height: dataset_util.int64_feature(height),
        image/width: dataset_util.int64_feature(width),
        image/filename: dataset_util.bytes_feature(filename),
        image/source_id: dataset_util.bytes_feature(filename),
        image/encoded: dataset_util.bytes_feature(encoded_jpg),
        image/format: dataset_util.bytes_feature(image_format),
        image/object/bbox/xmin: dataset_util.float_list_feature(xmins),
        image/object/bbox/xmax: dataset_util.float_list_feature(xmaxs),
        image/object/bbox/ymin: dataset_util.float_list_feature(ymins),
        image/object/bbox/ymax: dataset_util.float_list_feature(ymaxs),
        image/object/class/text: dataset_util.bytes_list_feature(classes_text),
        image/object/class/label: dataset_util.int64_list_feature(classes),
    }))
    return tf_example


def main(_):
    writer = tf.python_io.TFRecordWriter(FLAGS.output_path)
    path = os.path.join(os.getcwd(), images/test)    #一个csv文件最后生成一个tfrecord文件
    examples = pd.read_csv(FLAGS.csv_input)
    grouped = split(examples, filename)
    for group in grouped:
        tf_example = create_tf_example(group, path)
        writer.write(tf_example.SerializeToString())

    writer.close()
    output_path = os.path.join(os.getcwd(), FLAGS.output_path)
    print(Successfully created the TFRecords: {}.format(output_path))


if __name__ == __main__:
    tf.app.run()

同理还有train_generate_tfrecord.py:

"""
Usage:
  # From tensorflow/models/
  # Create train data:
  python generate_tfrecord.py --csv_input=data/train_labels.csv  --output_path=data/train.record

  # Create test data:
  python generate_tfrecord.py --csv_input=data/test_labels.csv  --output_path=data/test.record
"""
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import

import os
import io
import pandas as pd
import tensorflow as tf

from PIL import Image
from object_detection.utils import dataset_util
from collections import namedtuple, OrderedDict

flags = tf.app.flags
flags.DEFINE_string(csv_input, data/train_labels.csv, Path to the CSV input)
flags.DEFINE_string(output_path, data/train.record, Path to output TFRecord)
FLAGS = flags.FLAGS


# TO-DO replace this with label map
def class_text_to_int(row_label):
    if row_label == face:
        return 1
    else:
        0
        

def split(df, group):
    data = namedtuple(data, [filename, object])
    gb = df.groupby(group)
    return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)]


def create_tf_example(group, path):
    with tf.gfile.GFile(os.path.join(path, {}.format(group.filename)), rb) as fid:
        encoded_jpg = fid.read()
    encoded_jpg_io = io.BytesIO(encoded_jpg)
    image = Image.open(encoded_jpg_io)
    width, height = image.size

    filename = group.filename.encode(utf8)
    image_format = bjpg
    xmins = []
    xmaxs = []
    ymins = []
    ymaxs = []
    classes_text = []
    classes = []

    for index, row in group.object.iterrows():
        xmins.append(row[xmin] / width)
        xmaxs.append(row[xmax] / width)
        ymins.append(row[ymin] / height)
        ymaxs.append(row[ymax] / height)
        classes_text.append(row[class].encode(utf8))
        classes.append(class_text_to_int(row[class]))

    tf_example = tf.train.Example(features=tf.train.Features(feature={
        image/height: dataset_util.int64_feature(height),
        image/width: dataset_util.int64_feature(width),
        image/filename: dataset_util.bytes_feature(filename),
        image/source_id: dataset_util.bytes_feature(filename),
        image/encoded: dataset_util.bytes_feature(encoded_jpg),
        image/format: dataset_util.bytes_feature(image_format),
        image/object/bbox/xmin: dataset_util.float_list_feature(xmins),
        image/object/bbox/xmax: dataset_util.float_list_feature(xmaxs),
        image/object/bbox/ymin: dataset_util.float_list_feature(ymins),
        image/object/bbox/ymax: dataset_util.float_list_feature(ymaxs),
        image/object/class/text: dataset_util.bytes_list_feature(classes_text),
        image/object/class/label: dataset_util.int64_list_feature(classes),
    }))
    return tf_example


def main(_):
    writer = tf.python_io.TFRecordWriter(FLAGS.output_path)
    path = os.path.join(os.getcwd(), images/train)
    examples = pd.read_csv(FLAGS.csv_input)
    grouped = split(examples, filename)
    for group in grouped:
        tf_example = create_tf_example(group, path)
        writer.write(tf_example.SerializeToString())

    writer.close()
    output_path = os.path.join(os.getcwd(), FLAGS.output_path)
    print(Successfully created the TFRecords: {}.format(output_path))


if __name__ == __main__:
    tf.app.run()

 

数据集格式

原文:https://www.cnblogs.com/pacino12134/p/11291398.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!