首页 > 其他 > 详细

1-2人工智能与机器学习

时间:2019-08-04 00:22:28      阅读:68      评论:0      收藏:0      [点我收藏+]

机器学习是一门交叉学科

机器学习和很多名词相关 ,包括: 模式识别, 数据清洗,数据挖掘,统计学习,计算机视觉,语音识别  , 深度学习

 

模式识别,机器学习也是模式学习,只是换了个说法,机器学习把各种各样的场景当成各种模式,把模式识别出来,相当于总结模式的规律

 

数据挖掘,   很多时候是和数据库的知识,然后加上核心的算法,就可以做数据挖掘方面的事情了。 拿到数据就会对数据进行清洗 (ETL)

再加上一些机器学习算法,就可以挖掘出价值来。

 

统计学习。   机器学习很多时候会涉及公式,  很多公式会用到统计学习的方法,机器学习也是一种应用数学。

 

计算机视觉。  把图片当做数据 ,使用一些算法,使机器像人一样有总结规律的能力。根据图片的一些规律,来识别图片是什么。识别图片中有什么物品,是具体什么位置 等等。

 

语音识别。  把声音当做开始的数据源,把他进行一些云的识别,或者进行一些翻译,  其中最核心的吗,除了把声音转成机器可以听得懂的数值之外,就是要使用算法,来让他有很好的识别的准确率。

 

自然语言处理。    某门语言,翻译成另外一门语言, 其中的核心还是要找到他的具体规律,比如 词和词之间的规律,词项的特点,实现这些功能,也是需要训练一个模型。

 

 

机器学习 的子类 :深度学习  深度学习的核心是算法。这些算法有些会比较复杂。同时也需要大量的数据,来模拟人的能力,来做AI产品。很多大厂自己研发了深度学习的框架。  深度学习和机器学习是相通的

子父类关系:

 

技术分享图片

 

总结:

模式识别= 机器学习

数据挖掘=机器学习+数据库

统计学习=机器学习的数学化

计算机视觉=图像处理+机器学习

语音识别=语音处理+机器学习

自然语言处理 = 文本处理+机器学习

 

1-2人工智能与机器学习

原文:https://www.cnblogs.com/Vsolution/p/11296758.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!