首页 > 其他 > 详细

[JZOJ2865]【集训队互测 2012】Attack

时间:2019-08-04 18:00:15      阅读:74      评论:0      收藏:0      [点我收藏+]

题目

题目大意

平面上有一堆带权值的点。两种操作:交换两个点的权值,查找一个矩形的第\(k\)
\(N<=60000\)
\(M<=10000\)
\(10000ms\)


思考历程&各种可能过的方法

先是想了一会儿,然后突然发现一个惊天大秘密:\(10000ms\)
然后就想出个\(O(NM)\)的做法……
将矩形内的所有点找出来,然后\(O(N)\)求第\(k\)大……
于是爆\(0\)了。后来才发现是输出的时候漏了句号,而且给出的矩形有\(x0>x1\)\(y0>y1\)的情况……
改过来,\(50+\)
其实\(O(N)\)求第\(k\)大带巨大常数,不如优化:
首先将所有的点按照权值从小到大排序,然后扫过去就可以了。遇见第\(k\)个在矩形内的,直接退出。
然后就有了\(100\)分的好成绩。
当然,这是水法……

考虑一些看着像正解的东西。
首先想到的是树套树套树,显然不现实。
然后就想\(kd-tree\)。二分答案,如果把权值看成一个维,就相当于在一个三维空间中找一个长方体内点的个数。
修改的时候并不需要打个动态的\(kd-tree\)(不然常数大得要死)。我们先将所有修改后形成的新点加进来。每个点上有个标记表示它是否存在。修改的时候修改标记,同时维护一下就可以了。
时间复杂度是\(O(m(n+m)^{\frac{2}{3}}\lg 10^9)\)(如果将权值离散化,\(\lg 10^9\)可以变成\(\lg n\)

感觉上可能不过……
然后又有个方法:\(kd-tree\)套权值线段树!
这样有个好处就是不需要再外面二分答案。
询问的时候在\(kd-tree\)里找对应的节点。找出来的是一堆整块的子树和零散的点。
然后就可以一起二分(也就是每棵权值线段树上的指针一起移动),对于零散的点暴力判就可以了。
时间复杂度是\(O(m\sqrt n\lg 10^9)\)
实际上这也差不多是正解的时间复杂度……(或许可以过吧……)


正解

题解中用到一个叫划分树的东西,类似于整体二分的过程记录下来,这里就不在赘述了。
它有个经典的用处就是求区间第\(k\)小。
然而这个东西修改很不方便……如果单是修改是\(O(n)\)的(随便想一想就能知道),或者重构,是\(O(n\lg n)\)的。
为了减小代码复杂度,还是考虑重构吧……
考虑按照\(x\)坐标分块。每个块内以\(y\)排序。
每个整块建立一个划分树。
修改的时候直接暴力重构。
查询的时候就是一堆整块和一些散点。散点记录到一个数组里面。
在几个划分树上二分即可(散点也是暴力判断)。
时间复杂度是\(O((n+m)\sqrt n \lg 10^8)\)

如果不重构,加上修改操作,时间复杂度会优一点。
还有,实际上也不需要划分树这种东西,用主席树代替也可以(应该会简单很多)。


代码(未A,待以后填坑)

using namespace std;
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cassert>
#define N 60010
#define M 10010
#define MAX 1000000000
#define K 250
#define N_K 250
inline int input(){
    char ch=getchar();
    while (ch<'0' || '9'<ch)
        ch=getchar();
    int x=0;
    do{
        x=x*10+ch-'0';
        ch=getchar();
    }
    while ('0'<=ch && ch<='9');
    return x;
}
int n,m;
struct DOT{
    int x,y,z;
} d[N];
int p[N],rev[N];
inline bool cmp1(int a,int b){return d[a].x<d[b].x;}
inline bool cmp2(int a,int b){return d[a].y<d[b].y;}
int nb,bel[N],end[N_K],mxx[N_K];
int lis[31][N],num[31][N];
int nq,q[N];
int nt;
struct Range{
    int l,r,st,en;
} t[N_K];
void build(int fl,int l,int r,int st,int en){
    if (l==r || st>en)
        return;
    int mid=l+r>>1,k=st-1;
    for (int i=st,j=0;i<=en;++i){
        if (d[lis[fl][i]].z<=mid){
            ++j;
            lis[fl+1][++k]=lis[fl][i];
        }
        num[fl][i]=j;
    }
    for (int i=st;i<=en;++i)
        if (d[lis[fl][i]].z>mid)
            lis[fl+1][++k]=lis[fl][i];
    build(fl+1,l,mid,st,st+num[fl][en]-1);
    build(fl+1,mid+1,r,st+num[fl][en],en);
}
int kth(int fl,int l,int r,int k){
    if (l==r){
        int siz=0;
        for (int i=1;i<=nt;++i)
            siz+=t[i].r-t[i].l+1;
        for (int i=1;i<=nq;++i)
            if (q[i]==l)
                siz++;
        if (k<=siz)
            return l;
        return -1;
    }
    int mid=l+r>>1,lsiz=0;
    for (int i=1;i<=nt;++i)
        lsiz+=num[fl][t[i].r]-(t[i].l>t[i].st?num[fl][t[i].l-1]:0);
    for (int i=1;i<=nq;++i)
        if (q[i]<=mid)
            lsiz++;
    if (k<=lsiz){
        for (int i=1;i<=nt;++i){
            t[i].en=t[i].st+num[fl][t[i].en]-1;
            t[i].l=t[i].st+(t[i].l>t[i].st?num[fl][t[i].l-1]:0);
            t[i].r=t[i].st+num[fl][t[i].r]-1;
        }
        return kth(fl+1,l,mid,k);
    }
    for (int i=1;i<=nt;++i){
        int rsiz=t[i].r-t[i].l+1-lsiz;
        t[i].r=t[i].r+num[fl][t[i].en]-num[fl][t[i].r];
        t[i].l=t[i].r-rsiz+1;
        t[i].st=t[i].st+num[fl][t[i].en];
    }
    for (int i=1;i<=nq;++i)
        if (q[i]<=mid)
            q[i]=MAX+1;
    return kth(fl+1,mid+1,r,k-lsiz);
}
int main(){
    //freopen("in.txt","r",stdin);
    n=input(),m=input();
    for (int i=1;i<=n;++i)
        d[i]={input(),input(),input()},p[i]=i;
    sort(p+1,p+n+1,cmp1);
    for (int i=1;i*K<=n;++i){
        ++nb;
        for (int j=(i-1)*K+1;j<=i*K;++j)
            bel[j]=nb;
        end[i]=i*K;
    }
    if (n%K){
        ++nb;
        for (int j=n/K*K+1;j<=n;++j)
            bel[j]=nb;
        end[nb]=n;
    }
    for (int i=1;i<=nb;++i){
        mxx[i]=d[p[end[i]]].x;
        sort(p+end[i-1]+1,p+end[i]+1,cmp2);
        for (int j=end[i-1]+1;j<=end[i];++j)
            lis[0][j]=p[j];
        build(0,0,MAX,end[i-1]+1,end[i]);
    }
    for (int i=1;i<=n;++i)
        rev[p[i]]=i;
    while (m--){
        char op=getchar();
        while (op<'A' || 'Z'<op)
            op=getchar();
        if (op=='S'){
            int a=input()+1,b=input()+1,tmp=d[a].z;
            d[a].z=d[b].z;
            build(0,0,MAX,end[bel[rev[a]]-1]+1,end[bel[rev[a]]]);
            d[b].z=tmp;
            build(0,0,MAX,end[bel[rev[b]]-1]+1,end[bel[rev[b]]]);
        }
        else{
            int x0=input(),y0=input(),x1=input(),y1=input(),k=input();
            if (x0>x1)
                swap(x0,x1);
            if (y0>y1)
                swap(y0,y1);
            int lb=nb+1,rb=0;
            for (int i=1;i<=nb;++i)
                if (mxx[i]>=x0){
                    lb=i;
                    break;
                }
            for (int i=nb;i>=1;--i)
                if (mxx[i]<=x1){
                    rb=i;
                    break;
                }
            if (lb>rb+1){
                printf("It doesn't exist.\n");
                break;
            }
            nq=0;
            if (lb==rb+1){
                for (int i=end[lb-1]+1;i<=end[lb];++i)
                    if (x0<=d[p[i]].x && d[p[i]].x<=x1 && y0<=d[p[i]].y && d[p[i]].y<=y1)
                        q[++nq]=d[p[i]].z;
            }
            else{
                for (int i=end[lb-1]+1;i<=end[lb];++i)
                    if (x0<=d[p[i]].x && d[p[i]].x<=x1 && y0<=d[p[i]].y && d[p[i]].y<=y1)
                        q[++nq]=d[p[i]].z;
                for (int i=end[rb]+1;i<=end[rb+1];++i)
                    if (x0<=d[p[i]].x && d[p[i]].x<=x1 && y0<=d[p[i]].y && d[p[i]].y<=y1)
                        q[++nq]=d[p[i]].z;
            }
            nt=0;
            for (int i=lb+1;i<=rb;++i){
                int l=end[i-1]+1,r=end[i],st=end[i]+1,en;
                while (l<=r){
                    int mid=l+r>>1;
                    if (d[p[mid]].y>=y0)
                        r=(st=mid)-1;
                    else
                        l=mid+1;
                }
                if (st==end[i]+1)
                    continue;
                l=st,r=end[i];
                en=st-1;
                while (l<=r){
                    int mid=l+r>>1;
                    if (d[p[mid]].y<=y1)
                        l=(en=mid)+1;
                    else
                        r=mid-1;
                }
                if (st>en)
                    continue;
//              assert(st>=0 && en>=0);
                t[++nt]={st,en,end[i-1]+1,end[i]};
            }
            int ans=kth(0,0,MAX,k);
            if (ans==-1)
                printf("It doesn't exist.\n");
            else
                printf("%d\n",ans);
        }
    }
    return 0;
}

总结

像这种题,暴力是不好卡掉的……
所以要看准数据范围,加以优秀的卡常操作……

[JZOJ2865]【集训队互测 2012】Attack

原文:https://www.cnblogs.com/jz-597/p/11298786.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!