Ref:https://github.com/huihut/interview
// 类 class A { private: const int a; // 常对象成员,只能在初始化列表赋值 public: // 构造函数 A() : a(0) { }; A(int x) : a(x) { }; // 初始化列表 // const可用于对重载函数的区分 int getValue(); // 普通成员函数 int getValue() const; // 常成员函数,不得修改类中的任何数据成员的值 }; void function() { // 对象 A b; // 普通对象,可以调用全部成员函数、更新常成员变量 const A a; // 常对象,只能调用常成员函数 const A *p = &a; // 常指针 const A &q = a; // 常引用 // 指针 char greeting[] = "Hello"; char* p1 = greeting; // 指针变量,指向字符数组变量 const char* p2 = greeting; // 指针变量,指向字符数组常量 char* const p3 = greeting; // 常指针,指向字符数组变量 const char* const p4 = greeting; // 常指针,指向字符数组常量 } // 函数 void function1(const int Var); // 传递过来的参数在函数内不可变 void function2(const char* Var); // 参数指针所指内容为常量 void function3(char* const Var); // 参数指针为常指针 void function4(const int& Var); // 引用参数在函数内为常量 // 函数返回值 const int function5(); // 返回一个常数 const int* function6(); // 返回一个指向常量的指针变量,使用:const int *p = function6(); int* const function7(); // 返回一个指向变量的常指针,使用:int* const p = function7();
this
指针是一个隐含于每一个非静态成员函数中的特殊指针。它指向调用该成员函数的那个对象。this
指针,然后调用成员函数,每次成员函数存取数据成员时,都隐式使用 this
指针。this
指针被隐含地声明为: ClassName *const this
,这意味着不能给 this
指针赋值;在 ClassName
类的 const
成员函数中,this
指针的类型为:const ClassName* const
,这说明不能对 this
指针所指向的这种对象是不可修改的(即不能对这种对象的数据成员进行赋值操作);this
并不是一个常规变量,而是个右值,所以不能取得 this
的地址(不能 &this
)。this
指针:list
。
优点
缺点
// 声明1(加 inline,建议使用) inline int functionName(int first, int second,...); // 声明2(不加 inline) int functionName(int first, int second,...); // 定义 inline int functionName(int first, int second,...) {/****/}; // 类内定义,隐式内联 class A { int doA() { return 0; } // 隐式内联 } // 类外定义,需要显式内联 class A { int doA(); } inline int A::doA() { return 0; } // 需要显式内联
Are "inline virtual" member functions ever actually "inlined"?
inline virtual
唯一可以内联的时候是:编译器知道所调用的对象是哪个类(如 Base::who()
),这只有在编译器具有实际对象而不是对象的指针或引用时才会发生。#include <iostream> using namespace std; class Base { public: inline virtual void who() { cout << "I am Base\n"; } virtual ~Base() {} }; class Derived : public Base { public: inline void who() // 不写inline时隐式内联 { cout << "I am Derived\n"; } }; int main() { // 此处的虚函数 who(),是通过类(Base)的具体对象(b)来调用的,编译期间就能确定了,所以它可以是内联的,但最终是否内联取决于编译器。 Base b; b.who(); // 此处的虚函数是通过指针调用的,呈现多态性,需要在运行时期间才能确定,所以不能为内联。 Base *ptr = new Derived(); ptr->who(); // 因为Base有虚析构函数(virtual ~Base() {}),所以 delete 时,会先调用派生类(Derived)析构函数,再调用基类(Base)析构函数,防止内存泄漏。 delete ptr; ptr = nullptr; system("pause"); return 0; }
volatile int i = 10;
断言,是宏,而非函数。assert 宏的原型定义在 <assert.h>
(C)、<cassert>
(C++)中,其作用是如果它的条件返回错误,则终止程序执行。可以通过定义 NDEBUG
来关闭 assert,但是需要在源代码的开头,include <assert.h>
之前。
assert() 使用
#define NDEBUG // 加上这行,则 assert 不可用
#include <assert.h>
assert( p != NULL ); // assert 不可用
设定结构体、联合以及类成员变量以 n 字节方式对齐
#pragma pack(n) 使用
#pragma pack(push) // 保存对齐状态
#pragma pack(4) // 设定为 4 字节对齐
struct test
{
char m1;
double m4;
int m3;
};
#pragma pack(pop) // 恢复对齐状态
Bit mode: 2; // mode 占 2 位
类可以将其(非静态)数据成员定义为位域(bit-field),在一个位域中含有一定数量的二进制位。当一个程序需要向其他程序或硬件设备传递二进制数据时,通常会用到位域。
extern "C"
修饰的变量和函数是按照 C 语言方式编译和链接的extern "C"
的作用是让 C++ 编译器将 extern "C"
声明的代码当作 C 语言代码处理,可以避免 C++ 因符号修饰导致代码不能和C语言库中的符号进行链接的问题。
extern "C" 使用
#ifdef __cplusplus
extern "C" {
#endif
void *memset(void *, int, size_t);
#ifdef __cplusplus
}
#endif
// c
typedef struct Student {
int age;
} S;
等价于
// c
struct Student {
int age;
};
typedef struct Student S;
此时 S
等价于 struct Student
,但两个标识符名称空间不相同。
另外还可以定义与 struct Student
不冲突的 void Student() {}
。
由于编译器定位符号的规则(搜索规则)改变,导致不同于C语言。
一、如果在类标识符空间定义了 struct Student {...};
,使用 Student me;
时,编译器将搜索全局标识符表,Student
未找到,则在类标识符内搜索。
即表现为可以使用 Student
也可以使用 struct Student
,如下:
// cpp
struct Student {
int age;
};
void f( Student me ); // 正确,"struct" 关键字可省略
二、若定义了与 Student
同名函数之后,则 Student
只代表函数,不代表结构体,如下:
typedef struct Student {
int age;
} S;
void Student() {} // 正确,定义后 "Student" 只代表此函数
//void S() {} // 错误,符号 "S" 已经被定义为一个 "struct Student" 的别名
int main() {
Student();
struct Student me; // 或者 "S me";
return 0;
}
总的来说,struct 更适合看成是一个数据结构的实现体,class 更适合看成是一个对象的实现体。
联合(union)是一种节省空间的特殊的类,一个 union 可以有多个数据成员,但是在任意时刻只有一个数据成员可以有值。当某个成员被赋值后其他成员变为未定义状态。联合有如下特点:
#include<iostream> union UnionTest { UnionTest() : i(10) {}; int i; double d; }; static union { int i; double d; }; int main() { UnionTest u; union { int i; double d; }; std::cout << u.i << std::endl; // 输出 UnionTest 联合的 10 ::i = 20; std::cout << ::i << std::endl; // 输出全局静态匿名联合的 20 i = 30; std::cout << i << std::endl; // 输出局部匿名联合的 30 return 0; }
C 实现 C++ 的面向对象特性(封装、继承、多态)
struct A { A(int) { } operator bool() const { return true; } }; struct B { explicit B(int) {} explicit operator bool() const { return true; } }; void doA(A a) {} void doB(B b) {} int main() { A a1(1); // OK:直接初始化 A a2 = 1; // OK:复制初始化 A a3{ 1 }; // OK:直接列表初始化 A a4 = { 1 }; // OK:复制列表初始化 A a5 = (A)1; // OK:允许 static_cast 的显式转换 doA(1); // OK:允许从 int 到 A 的隐式转换 if (a1); // OK:使用转换函数 A::operator bool() 的从 A 到 bool 的隐式转换 bool a6(a1); // OK:使用转换函数 A::operator bool() 的从 A 到 bool 的隐式转换 bool a7 = a1; // OK:使用转换函数 A::operator bool() 的从 A 到 bool 的隐式转换 bool a8 = static_cast<bool>(a1); // OK :static_cast 进行直接初始化 B b1(1); // OK:直接初始化 B b2 = 1; // 错误:被 explicit 修饰构造函数的对象不可以复制初始化 B b3{ 1 }; // OK:直接列表初始化 B b4 = { 1 }; // 错误:被 explicit 修饰构造函数的对象不可以复制列表初始化 B b5 = (B)1; // OK:允许 static_cast 的显式转换 doB(1); // 错误:被 explicit 修饰构造函数的对象不可以从 int 到 B 的隐式转换 if (b1); // OK:被 explicit 修饰转换函数 B::operator bool() 的对象可以从 B 到 bool 的按语境转换 bool b6(b1); // OK:被 explicit 修饰转换函数 B::operator bool() 的对象可以从 B 到 bool 的按语境转换 bool b7 = b1; // 错误:被 explicit 修饰转换函数 B::operator bool() 的对象不可以隐式转换 bool b8 = static_cast<bool>(b1); // OK:static_cast 进行直接初始化 return 0; }
一条 using 声明
语句一次只引入命名空间的一个成员。它使得我们可以清楚知道程序中所引用的到底是哪个名字。如:
using namespace_name::name;
在 C++11 中,派生类能够重用其直接基类定义的构造函数。
class Derived : Base {
public:
using Base::Base;
/* ... */
};
如上 using 声明,对于基类的每个构造函数,编译器都生成一个与之对应(形参列表完全相同)的派生类构造函数。生成如下类型构造函数:
Derived(parms) : Base(args) { }
using 指示
使得某个特定命名空间中所有名字都可见,这样我们就无需再为它们添加任何前缀限定符了。如:
using namespace_name name;
using 指示
污染命名空间一般说来,使用 using 命令比使用 using 编译命令更安全,这是由于它只导入了指定的名称。如果该名称与局部名称发生冲突,编译器将发出指示。using编译命令导入所有的名称,包括可能并不需要的名称。如果与局部名称发生冲突,则局部名称将覆盖名称空间版本,而编译器并不会发出警告。另外,名称空间的开放性意味着名称空间的名称可能分散在多个地方,这使得难以准确知道添加了哪些名称。
using 使用
尽量少使用 using 指示
using namespace std;
应该多使用 using 声明
int x;
std::cin >> x ;
std::cout << x << std::endl;
或者
using std::cin;
using std::cout;
using std::endl;
int x;
cin >> x;
cout << x << endl;
::name
):用于类型名称(类、类成员、成员函数、变量等)前,表示作用域为全局命名空间class::name
):用于表示指定类型的作用域范围是具体某个类的namespace::name
):用于表示指定类型的作用域范围是具体某个命名空间的int count = 0; // 全局(::)的 count class A { public: static int count; // 类 A 的 count(A::count) }; int main() { ::count = 1; // 设置全局的 count 的值为 1 A::count = 2; // 设置类 A 的 count 为 2 int count = 0; // 局部的 count count = 3; // 设置局部的 count 的值为 3 return 0; }
enum class open_modes { input, output, append };
enum color { red, yellow, green };
enum { floatPrec = 6, doublePrec = 10 };
decltype 关键字用于检查实体的声明类型或表达式的类型及值分类。语法: decltype ( expression )
// 尾置返回允许我们在参数列表之后声明返回类型 template <typename It> auto fcn(It beg, It end) -> decltype(*beg) { // 处理序列 return *beg; // 返回序列中一个元素的引用 } // 为了使用模板参数成员,必须用 typename template <typename It> auto fcn2(It beg, It end) -> typename remove_reference<decltype(*beg)>::type { // 处理序列 return *beg; // 返回序列中一个元素的拷贝 }
常规引用,一般表示对象的身份。
右值引用就是必须绑定到右值(一个临时对象、将要销毁的对象)的引用,一般表示对象的值。
右值引用可实现转移语义(Move Sementics)和精确传递(Perfect Forwarding),它的主要目的有两个方面:
X& &
、X& &&
、X&& &
可折叠成 X&
X&& &&
可折叠成 X&&
好处
用花括号初始化器列表初始化一个对象,其中对应构造函数接受一个 std::initializer_list
参数.
#include <iostream> #include <vector> #include <initializer_list> template <class T> struct S { std::vector<T> v; S(std::initializer_list<T> l) : v(l) { std::cout << "constructed with a " << l.size() << "-element list\n"; } void append(std::initializer_list<T> l) { v.insert(v.end(), l.begin(), l.end()); } std::pair<const T*, std::size_t> c_arr() const { return {&v[0], v.size()}; // 在 return 语句中复制列表初始化 // 这不使用 std::initializer_list } }; template <typename T> void templated_fn(T) {} int main() { S<int> s = {1, 2, 3, 4, 5}; // 复制初始化 s.append({6, 7, 8}); // 函数调用中的列表初始化 std::cout << "The vector size is now " << s.c_arr().second << " ints:\n"; for (auto n : s.v) std::cout << n << ‘ ‘; std::cout << ‘\n‘; std::cout << "Range-for over brace-init-list: \n"; for (int x : {-1, -2, -3}) // auto 的规则令此带范围 for 工作 std::cout << x << ‘ ‘; std::cout << ‘\n‘; auto al = {10, 11, 12}; // auto 的特殊规则 std::cout << "The list bound to auto has size() = " << al.size() << ‘\n‘; // templated_fn({1, 2, 3}); // 编译错误!“ {1, 2, 3} ”不是表达式, // 它无类型,故 T 无法推导 templated_fn<std::initializer_list<int>>({1, 2, 3}); // OK templated_fn<std::vector<int>>({1, 2, 3}); // 也 OK }
面向对象程序设计(Object-oriented programming,OOP)是种具有对象概念的程序编程典范,同时也是一种程序开发的抽象方针。
面向对象三大特征 —— 封装、继承、多态
把客观事物封装成抽象的类,并且类可以把自己的数据和方法只让可信的类或者对象操作,对不可信的进行信息隐藏。关键字:public, protected, private。不写默认为 private。
public
成员:可以被任意实体访问protected
成员:只允许被子类及本类的成员函数访问private
成员:只允许被本类的成员函数、友元类或友元函数访问
函数重载
class A { public: void do(int a); void do(int a, int b); };
注意:
class Shape // 形状类 { public: virtual double calcArea() { ... } virtual ~Shape(); }; class Circle : public Shape // 圆形类 { public: virtual double calcArea(); ... }; class Rect : public Shape // 矩形类 { public: virtual double calcArea(); ... }; int main() { Shape * shape1 = new Circle(4.0); Shape * shape2 = new Rect(5.0, 6.0); shape1->calcArea(); // 调用圆形类里面的方法 shape2->calcArea(); // 调用矩形类里面的方法 delete shape1; shape1 = nullptr; delete shape2; shape2 = nullptr; return 0; }
虚析构函数是为了解决基类的指针指向派生类对象,并用基类的指针删除派生类对象。
class Shape { public: Shape(); // 构造函数不能是虚函数 virtual double calcArea(); virtual ~Shape(); // 虚析构函数 }; class Circle : public Shape // 圆形类 { public: virtual double calcArea(); ... }; int main() { Shape * shape1 = new Circle(4.0); shape1->calcArea(); delete shape1; // 因为Shape有虚析构函数,所以delete释放内存时,先调用子类析构函数,再调用基类析构函数,防止内存泄漏。 shape1 = NULL; return 0; }
纯虚函数是一种特殊的虚函数,在基类中不能对虚函数给出有意义的实现,而把它声明为纯虚函数,它的实现留给该基类的派生类去做。
virtual int A() = 0;
.rodata section
,见:目标文件存储结构),存放虚函数指针,如果派生类实现了基类的某个虚函数,则在虚表中覆盖原本基类的那个虚函数指针,在编译时根据类的声明创建。虚继承用于解决多继承条件下的菱形继承问题(浪费存储空间、存在二义性)。
底层实现原理与编译器相关,一般通过虚基类指针和虚基类表实现,每个虚继承的子类都有一个虚基类指针(占用一个指针的存储空间,4字节)和虚基类表(不占用类对象的存储空间)(需要强调的是,虚基类依旧会在子类里面存在拷贝,只是仅仅最多存在一份而已,并不是不在子类里面了);当虚继承的子类被当做父类继承时,虚基类指针也会被继承。
实际上,vbptr 指的是虚基类表指针(virtual base table pointer),该指针指向了一个虚基类表(virtual table),虚表中记录了虚基类与本类的偏移地址;通过偏移地址,这样就找到了虚基类成员,而虚继承也不用像普通多继承那样维持着公共基类(虚基类)的两份同样的拷贝,节省了存储空间。
用于分配、释放内存
申请内存,确认是否申请成功 char *str = (char*) malloc(100); assert(str != nullptr);
释放内存后指针置空 free(p); p = nullptr;
申请内存,确认是否申请成功 int main() { T* t = new T(); // 先内存分配 ,再构造函数 delete t; // 先析构函数,再内存释放 return 0; }
定位 new(placement new)允许我们向 new 传递额外的地址参数,从而在预先指定的内存区域创建对象。
new (place_address) type new (place_address) type (initializers) new (place_address) type [size] new (place_address) type [size] { braced initializer list } place_address 是个指针 initializers 提供一个(可能为空的)以逗号分隔的初始值列表
Is it legal (and moral) for a member function to say delete this?
合法,但:
new
(不是 new[]
、不是 placement new、不是栈上、不是全局、不是其他对象成员)分配的delete this
的成员函数是最后一个调用 this 的成员函数delete this
后面没有调用 this 了delete this
后没有人使用了
方法:将析构函数设置为私有
原因:C++ 是静态绑定语言,编译器管理栈上对象的生命周期,编译器在为类对象分配栈空间时,会先检查类的析构函数的访问性。若析构函数不可访问,则不能在栈上创建对象。
方法:将 new 和 delete 重载为私有
原因:在堆上生成对象,使用 new 关键词操作,其过程分为两阶段:第一阶段,使用 new 在堆上寻找可用内存,分配给对象;第二阶段,调用构造函数生成对象。将 new 操作设置为私有,那么第一阶段就无法完成,就不能够在堆上生成对象。
头文件:#include <memory>
std::auto_ptr<std::string> ps (new std::string(str));
多个智能指针可以共享同一个对象,对象的最末一个拥有着有责任销毁对象,并清理与该对象相关的所有资源。
weak_ptr 允许你共享但不拥有某对象,一旦最末一个拥有该对象的智能指针失去了所有权,任何 weak_ptr 都会自动成空(empty)。因此,在 default 和 copy 构造函数之外,weak_ptr 只提供 “接受一个 shared_ptr” 的构造函数。
unique_ptr 是 C++11 才开始提供的类型,是一种在异常时可以帮助避免资源泄漏的智能指针。采用独占式拥有,意味着可以确保一个对象和其相应的资源同一时间只被一个 pointer 拥有。一旦拥有着被销毁或编程 empty,或开始拥有另一个对象,先前拥有的那个对象就会被销毁,其任何相应资源亦会被释放。
被 c++11 弃用,原因是缺乏语言特性如 “针对构造和赋值” 的 std::move
语义,以及其他瑕疵。
move
语义;delete
),unique_ptr 可以管理数组(析构调用 delete[]
);
强制类型转换
coding style
https://zh-google-styleguide.readthedocs.io/en/latest/google-cpp-styleguide/contents/
原文:https://www.cnblogs.com/pdev/p/11298988.html