1 """ python绘制神经网络训练精度与损失 """ 2 3 # 导入相应包 4 from matplotlib import pyplot as plt 5 6 # 构造绘图函数 7 def drow(history): 8 epochs = range(1, len(history[‘loss‘]) + 1) 9 plt.plot(epochs, history[‘loss‘], ‘bo‘, label=‘Training loss‘) 10 plt.plot(epochs, history[‘val_loss‘], ‘b‘, label=‘Validation loss‘) 11 plt.title(‘Training and Validation loss‘) 12 plt.xlabel(‘Epochs‘) 13 plt.ylabel(‘Loss‘) 14 plt.legend() 15 16 plt.imsave(‘E:/acc_and_loss/Training and Validation loss.jpg‘) 17 18 plt.figure() 19 epochs = range(1, len(history[‘acc‘]) + 1) 20 plt.plot(epochs, history[‘acc‘], ‘bo‘, label=‘Training acc‘) 21 plt.plot(epochs, history[‘val_acc‘], ‘b‘, label=‘validation acc‘) 22 plt.title(‘Training and validation acc‘) 23 plt.xlabel(‘Epochs‘) 24 plt.ylabel(‘acc‘) 25 plt.legend() 26 27 plt.imsave(‘E:/acc_and_loss/Training and validation acc.jpg‘) 28 29 plt.show()
绘制图形展示: 2019-08-07 22:47:00
![]() |
![]() |
原文:https://www.cnblogs.com/Junlong/p/11318333.html