import time import numpy as np import torch import torch.nn.functional as F from torchvision import datasets from torchvision import transforms import torch.nn as nn from torch.utils.data import DataLoader if torch.cuda.is_available(): torch.backends.cudnn.deterministic = True
######################### ## SETTINGS ######################### # Device device = torch.device("cuda:2" if torch.cuda.is_available() else "cpu") # Hyperparameters random_seed = 123 generator_learning_rate = 0.001 discriminator_learning_rate = 0.001 num_epochs = 100 batch_size = 128 LATENT_DIM = 100 IMG_SHAPE = (1, 28, 28) IMG_SIZE = 1 for x in IMG_SHAPE: IMG_SIZE *= x
######################### ## MNIST DATASET ######################### train_dataset = datasets.MNIST(root=‘../data‘, train=True, transform=transforms.ToTensor(), download=True) test_dataset = datasets.MNIST(root=‘../data‘, train=False, transform=transforms.ToTensor()) train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False) # Checking the dataset for images, labels in train_loader: print(‘Image batch dimensions:‘, images.shape) print(‘Image label dimensions:‘, labels.shape) break
# 输出
# Image batch dimensions: torch.Size([128, 1, 28, 28])
# Image label dimensions: torch.Size([128])
############################## ## MODEL ############################## class GAN(torch.nn.Module): def __init__(self): super(GAN, self).__init__() self.generator = nn.Sequential( nn.Linear(LATENT_DIM, 128), nn.LeakyReLU(inplace=True), nn.Dropout(p=0.5), nn.Linear(128, IMG_SIZE), nn.Tanh() ) self.discriminator = nn.Sequential( nn.Linear(IMG_SIZE, 128), nn.LeakyReLU(inplace=True), nn.Dropout(p=0.5), nn.Linear(128, 1), nn.Sigmoid() ) def generator_forward(self, z): img = self.generator(z) return img def discriminator_forward(self, img): pred = model.discriminator(img) return pred.view(-1)
start_time = time.time() discr_costs = [] gener_costs = [] for epoch in range(num_epochs): model = model.train() for batch_idx, (features, targets) in enumerate(train_loader): features = (features - 0.5) * 2. features = features.view(-1, IMG_SIZE).to(device) targets = targets.to(device) # Adversarial ground truths valid = torch.ones(targets.size(0)).float().to(device) fake = torch.zeros(targets.size(0)).float().to(device) ### FORWARD AND BACK PROP # --------------------- # Train Generator # --------------------- # make new images z = torch.zeros((targets.size(0), LATENT_DIM)).uniform_(-1.0, 1.0).to(device) # generate a batch of images generated_features = model.generator_forward(z) # Loss measures generators‘s ability to fool the discriminator discr_pred = model.discriminator_forward(generated_features) gener_loss = F.binary_cross_entropy(discr_pred, valid) optim_gener.zero_grad() gener_loss.backward() optim_gener.step() # --------------------- # Train Discriminator # --------------------- # Measure discriminator‘s ability to classify real from samples discr_pred_real = model.discriminator_forward(features.view(-1, IMG_SIZE)) real_loss = F.binary_cross_entropy(discr_pred_real, valid) discr_pred_fake = model.discriminator_forward(generated_features.detach()) fake_loss = F.binary_cross_entropy(discr_pred_fake, fake) discr_loss = 0.5 * (real_loss + fake_loss) optim_discr.zero_grad() discr_loss.backward() optim_discr.step() discr_costs.append(discr_loss) gener_costs.append(gener_loss) ### LOGGING if not batch_idx % 100: print(‘Epoch: %03d/%03d | Batch %03d/%03d | Gen/Dis Loss: %.4f/%.4f‘ %(epoch+1, num_epochs, batch_idx, len(train_loader), gener_loss, discr_loss)) print(‘Time elapsed: %.2f min‘ % ((time.time() - start_time)/60)) print(‘Total Training Time: %.2f min‘ % ((time.time() - start_time)/60))
原文:https://www.cnblogs.com/xxxxxxxxx/p/11326956.html