首页 > 其他 > 详细

Codeforces 54E

时间:2019-08-10 09:34:27      阅读:98      评论:0      收藏:0      [点我收藏+]

对于两个贴在边上的顶点$A$,$B$,面积等于围成三角形面积减去$AB$围成的部分多边形面积。围成的多边形面积是确定的,我们希望三角形面积尽量小。

设$C$为墙角顶点,那么$C$位于以$AB$为直径的圆上,显然希望$C$距离$AB$最近,所以当多边形的某条边贴在墙壁上时三角形面积最小。

我们发现$A$,$B$存在单调性,那么可以双指针维护,面积则进行三角剖分维护,复杂度$O(n)$。

技术分享图片
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 4e4 + 5;
double sqr(double x) {
    return x * x;
}
struct P {
    double x, y;
    P() {}
    P(double _x, double _y) : x(_x), y(_y) {}
    friend P operator - (const P &a, const P &b) {
        return P(a.x - b.x, a.y - b.y);
    }
    friend double operator * (const P &a, const P &b) {
        return a.x * b.x + a.y * b.y;
    }
    friend double operator ^ (const P &a, const P &b) {
        return a.x * b.y - a.y * b.x;
    }
} p[maxn];
double dis(P a, P b) {
    return sqrt(sqr(a.x - b.x) + sqr(a.y - b.y));
}
int n;
int dec(int x) {
    return x - 1;
}
int inc(int x) {
    return (x + 1) % n;
}
double solve() {
    double ans = 1e18, s = 0;
    for(int i = 0, j = 1; i < n; ++i) {
        while((p[inc(j)] - p[j]) * (p[inc(i)] - p[i]) > 0) {
            s += fabs((p[i] - p[j]) ^ (p[i] - p[inc(j)]));
            j = inc(j);
        }
        double a = fabs((p[i] - p[inc(i)]) ^ (p[i] - p[j])) / dis(p[i], p[inc(i)]);
        double c = dis(p[i], p[j]);
        double b = sqrt(sqr(c) - sqr(a));
        double area = a * b;
        ans = min(ans, fabs(fabs(area) - fabs(s)));
        s -= fabs((p[j] - p[i]) ^ (p[inc(i)] - p[i]));
    }
    return ans * 0.5;
}
int main() {
    scanf("%d", &n);
    for(int i = 0; i < n; ++i) scanf("%lf%lf", &p[i].x, &p[i].y);
    double ans = solve();
    reverse(p, p + n);
    printf("%.15f\n", min(ans, solve()));
    return 0;
}
View Code

 

Codeforces 54E

原文:https://www.cnblogs.com/2-321414133115/p/11330199.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!