首页 > 其他 > 详细

海量数据处理算法—Bit-Map

时间:2014-08-15 18:10:20      阅读:443      评论:0      收藏:0      [点我收藏+]

1. Bit Map算法简介

        来自于《编程珠玑》。所谓的Bit-map就是用一个bit位来标记某个元素对应的Value, 而Key即是该元素。由于采用了Bit为单位来存储数据,因此在存储空间方面,可以大大节省。

2、 Bit Map的基本思想

        我们先来看一个具体的例子,假设我们要对0-7内的5个元素(4,7,2,5,3)排序(这里假设这些元素没有重复)。那么我们就可以采用Bit-map的方法来达到排序的目的。要表示8个数,我们就只需要8个Bit(1Bytes),首先我们开辟1Byte的空间,将这些空间的所有Bit位都置为0,如下图:
                                                       bubuko.com,布布扣


然后遍历这5个元素,首先第一个元素是4,那么就把4对应的位置为1(可以这样操作 p+(i/8)|(0x01<<(i%8)) 当然了这里的操作涉及到Big-ending和Little-ending的情况,这里默认为Big-ending),因为是从零开始的,所以要把第五位置为一(如下图):
 

                                                      bubuko.com,布布扣


然后再处理第二个元素7,将第八位置为1,,接着再处理第三个元素,一直到最后处理完所有的元素,将相应的位置为1,这时候的内存的Bit位的状态如下: 
 

                                                    bubuko.com,布布扣


然后我们现在遍历一遍Bit区域,将该位是一的位的编号输出(2,3,4,5,7),这样就达到了排序的目的。


优点:

1.运算效率高,不许进行比较和移位;

2.占用内存少,比如N=10000000;只需占用内存为N/8=1250000Byte=1.25M。 
缺点:

       所有的数据不能重复。即不可对重复的数据进行排序和查找。    


算法思想比较简单,但关键是如何确定十进制的数映射到二进制bit位的map图。


3、 Map映射表

假设需要排序或者查找的总数N=10000000,那么我们需要申请内存空间的大小为int a[1 + N/32],其中:a[0]在内存中占32为可以对应十进制数0-31,依次类推: 
bitmap表为: 
a[0]--------->0-31 
a[1]--------->32-63 
a[2]--------->64-95 
a[3]--------->96-127 
.......... 
那么十进制数如何转换为对应的bit位,下面介绍用位移将十进制数转换为对应的bit位。 

3、 位移转换 

申请一个int一维数组,那么可以当作为列为32位的二维数组,

               |                           32位                                       |

int a[0]    |0000000000000000000000000000000000000|

int a[1]    |0000000000000000000000000000000000000|

………………

int a[N]   |0000000000000000000000000000000000000|

例如十进制0,对应在a[0]所占的bit为中的第一位: 00000000000000000000000000000001 
0-31:对应在a[0]中 
i =0                            00000000000000000000000000000000 
temp=0                     00000000000000000000000000000000 
answer=1                 00000000000000000000000000000001 


i =1                            00000000000000000000000000000001 
temp=1                     00000000000000000000000000000001 
answer=2                 0000000000000000000000000000001


i =2                            0000000000000000000000000000001
temp=2                     0000000000000000000000000000001
answer=4                 00000000000000000000000000000100 


i =30                              00000000000000000000000000011110 
temp=30                       00000000000000000000000000011110 

answer=1073741824  01000000000000000000000000000000 


i =31                               00000000000000000000000000011111 
temp=31                         00000000000000000000000000011111 
answer=-2147483648 10000000000000000000000000000000 

32-63:对应在a[1]中 
i =32                            00000000000000000000000000100000 
temp=0                        00000000000000000000000000000000 
answer=1                    00000000000000000000000000000001 


i =33                            00000000000000000000000000100001 
temp=1                       00000000000000000000000000000001 
answer=2                    00000000000000000000000000000010 


i =34                            00000000000000000000000000100010 
temp=2                        00000000000000000000000000000010 
answer=4                    00000000000000000000000000000100 


i =61                              00000000000000000000000000111101 
temp=29                       00000000000000000000000000011101 
answer=536870912    00100000000000000000000000000000 


i =62                               00000000000000000000000000111110 
temp=30                        00000000000000000000000000011110 
answer=1073741824  01000000000000000000000000000000 


i =63                                00000000000000000000000000111111 
temp=31                         00000000000000000000000000011111 
answer=-2147483648  10000000000000000000000000000000

浅析上面的对应表,分三步: 
1.求十进制0-N对应在数组a中的下标: 
十进制0-31,对应在a[0]中,先由十进制数n转换为与32的余可转化为对应在数组a中的下标。比如n=24,那么 n/32=0,则24对应在数组a中的下标为0。又比如n=60,那么n/32=1,则60对应在数组a中的下标为1,同理可以计算0-N在数组a中的下标。 

2.求0-N对应0-31中的数: 

十进制0-31就对应0-31,而32-63则对应也是0-31,即给定一个数n可以通过模32求得对应0-31中的数。 

3.利用移位0-31使得对应32bit位为1. 

找到对应0-31的数为M, 左移M位:2^M. 然后置1.


由此我们计算10000000bit占用的空间:

1byte = 8bit

1kb = 1024byte

1mb = 1024kb

占用的空间为:10000000/8/1024/1024mb。

大概为1mb多一些。

3、 扩展 

        Bloom filter可以看做是对bit-map的扩展 


4、 Bit-Map的应用

      1)可进行数据的快速查找,判重,删除,一般来说数据范围是int的10倍以下。

       2)去重数据而达到压缩数据


5、 Bit-Map的具体实现

c语言实现:

  1. #define BITSPERWORD 32  

  2. #define SHIFT 5  

  3. #define MASK 0x1F  

  4. #define N 10000000  

  5.   

  6. int a[1 + N/BITSPERWORD];//申请内存的大小  

  7.   

  8.   

  9. //set 设置所在的bit位为1  

  10. void set(int i) {          

  11.     a[i>>SHIFT] |=  (1<<(i & MASK));   

  12. }  

  13. //clr 初始化所有的bit位为0  

  14. void clr(int i) {          

  15.     a[i>>SHIFT] &= ~(1<<(i & MASK));   

  16. }  

  17. //test 测试所在的bit为是否为1  

  18. int  test(int i){   

  19.     return a[i>>SHIFT] &   (1<<(i & MASK));   

  20. }  

  21.   

  22. int main()  

  23. {   int i;  

  24.     for (i = 0; i < N; i++)  

  25.         clr(i);    

  26.     while (scanf("%d", &i) != EOF)  

  27.         set(i);  

  28.     for (i = 0; i < N; i++)  

  29.         if (test(i))  

  30.             printf("%d\n", i);  

  31.     return 0;  

  32. }  


注明: 左移n位就是乘以2的n次方,右移n位就是除以2的n次方

解析本例中的void set(int i) {        a[i>>SHIFT] |=  (1<<(i & MASK)); }
1)  i>>SHIFT: 
其中SHIFT=5,即i右移5为,2^5=32,相当于i/32,即求出十进制i对应在数组a中的下标。比如i=20,通过i>>SHIFT=20>>5=0 可求得i=20的下标为0;

2)  i & MASK: 
其中MASK=0X1F,十六进制转化为十进制为31,二进制为0001 1111,i&(0001 1111)相当于保留i的后5位。 

比如i=23,二进制为:0001 0111,那么 
                         0001 0111 
                   &    0001 1111 = 0001 0111 十进制为:23 
比如i=83,二进制为:0000 0000 0101 0011,那么 
                          0000 0000 0101 0011 
                     &   0000 0000 0001 0000 = 0000 0000 0001 0011 十进制为:19 

i & MASK相当于i%32。 

3) 1<<(i & MASK) 
相当于把1左移 (i & MASK)位。 
比如(i & MASK)=20,那么i<<20就相当于: 
         0000 0000 0000 0000 0000 0000 0000 0001 << 20 
       =0000 0000 0001 0000 0000 0000 0000 0000 

注意上面 “|=”.

在博文:位运算符及其应用 提到过这样位运算应用:

 将int型变量a的第k位清0,即a=a&~(1<<k)
 将int型变量a的第k位置1, 即a=a|(1<<k)

这里的将  a[i/32] |= (1<<M)); 第M位置1 .


4) void set(int i) {        a[i>>SHIFT]  |=  (1<<(i & MASK)); }等价于:

  1. void set(int i)   

  2. {   

  3.    a[i/32] |= (1<<(i%32));   

  4. }  

即实现上面提到的三步:

1.求十进制0-N对应在数组a中的下标: n/32 

2.求0-N对应0-31中的数: N%32=M

3.利用移位0-31使得对应32bit位为1: 1<<M,并置1;


海量数据处理算法—Bit-Map,布布扣,bubuko.com

海量数据处理算法—Bit-Map

原文:http://my.oschina.net/floristgao/blog/301591

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!