首页 > 其他 > 详细

CodeForces 414B Mashmokh and ACM(dp)

时间:2019-08-13 20:26:50      阅读:87      评论:0      收藏:0      [点我收藏+]
B. Mashmokh and ACM
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Mashmokh‘s boss, Bimokh, didn‘t like Mashmokh. So he fired him. Mashmokh decided to go to university and participate in ACM instead of finding a new job. He wants to become a member of Bamokh‘s team. In order to join he was given some programming tasks and one week to solve them. Mashmokh is not a very experienced programmer. Actually he is not a programmer at all. So he wasn‘t able to solve them. That‘s why he asked you to help him with these tasks. One of these tasks is the following.

A sequence of l integers b1, b2, ..., bl (1 ≤ b1 ≤ b2 ≤ ... ≤ bl ≤ n) is called good if each number divides (without a remainder) by the next number in the sequence. More formally 技术分享图片 for all i (1 ≤ i ≤ l - 1).

Given n and k find the number of good sequences of length k. As the answer can be rather large print it modulo 1000000007 (109 + 7).

Input

The first line of input contains two space-separated integers n, k (1 ≤ n, k ≤ 2000).

Output

Output a single integer — the number of good sequences of length k modulo 1000000007 (109 + 7).

Examples
Input
Copy
3 2
Output
Copy
5
Input
Copy
6 4
Output
Copy
39
Input
Copy
2 1
Output
Copy
2
Note

In the first sample the good sequences are: [1, 1], [2, 2], [3, 3], [1, 2], [1, 3].

题意:给你1~n之间的数,让你组成一个长度为k序列,使得后一个的数mod前一个数为0.

思路:后一个数只与前一个数有关,设dp[i][j]表示长度为i的序列中最后一个数字为j,则dp[i][l] = dp[i][l] + dp[i-1][j],其中l%j == 0,l是j的倍数;

 1 #include <bits/stdc++.h>
 2 #define int long long
 3 #define rad rand()%mod+1
 4 using namespace std;
 5 const int maxn = 1e6+5;
 6 const int maxm = 2e3+5;
 7 const int mod = 1e9+7;
 8 int dp[maxm][maxm];
 9 signed main()
10 {
11     int n, k;
12     while(~scanf("%lld %lld", &n, &k))
13     {
14         memset(dp, 0, sizeof dp);
15         for(int i=1; i<=n; i++)
16             dp[1][i] = 1;
17         for(int i=1; i<=k; i++)
18         {
19             for(int j=1; j<=n; j++)
20             {
21                 for(int l=j; l<=n; l += j)
22                     dp[i][l] = (dp[i][l] + dp[i-1][j]) % mod;
23             }
24         }
25         int ans = 0;
26         for(int i=1; i<=n; i++)
27         {
28             ans += dp[k][i];
29             ans %= mod;
30         }
31         printf("%lld\n", ans);
32     }
33     return 0;
34 }
35 /***
36 
37 
38 ***/

 

CodeForces 414B Mashmokh and ACM(dp)

原文:https://www.cnblogs.com/mashen/p/11347095.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!