首页 > 编程语言 > 详细

SVM算法核函数的选择

时间:2019-08-14 17:19:16      阅读:78      评论:0      收藏:0      [点我收藏+]


SVM支持向量机,一般用于二分类模型,支持线性可分和非线性划分。SVM中用到的核函数有线性核‘linear‘、多项式核函数pkf以及高斯核函数rbf。

当训练数据线性可分时,一般用线性核函数,直接实现可分;

当训练数据不可分时,需要使用核技巧,将训练数据映射到另一个高维空间,使再高维空间中,数据可线性划分,

但需要注意的是,若样本n和特征m很大时,且特征m>>n时,需要用线性核函数,因为此时考虑高斯核函数的映射后空间维数更高,更复杂,也容易过拟合,此时使用高斯核函数的弊大于利,选择使用线性核会更好;

若样本n一般大小,特征m较小,此时进行高斯核函数映射后,不仅能够实现将原训练数据再高维空间中实现线性划分,而且计算方面不会有很大的消耗,因此利大于弊,适合用高斯核函数;

若样本n很大,但特征m较小,同样难以避免计算复杂的问题,因此会更多考虑线性核。

SVM算法核函数的选择

原文:https://www.cnblogs.com/zongfa/p/11353155.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!