首页 > 其他 > 详细

概率笔记11——一维正态分布的最大似然估计

时间:2019-08-14 18:41:23      阅读:176      评论:0      收藏:0      [点我收藏+]

  正态分布密度函数是:

技术分享图片

  若随机变量X服从一个数学期望为μ、方差为σ2的正态分布,记为N(μ,σ2)。当μ=0,σ2=1是,称为标准正态分布。不需要记住这个复杂的公式,知道它的意义即可,在使用时可以随时查阅。

  在研究正态分布时,我们认为每个样本都是等权的,因此μ是随机变量的均值,控制了曲线的位置,σ2控制了曲线的陡峭程度:   

技术分享图片

  σ2越小,样本越靠近μ:

技术分享图片

  在上图中,当σ=0.2时,曲线更陡峭,倒钟更窄,样本更向μ处集中。

最大似然估计量

  随机变量X服从正态分布:

技术分享图片

  如果有n个可观察样本,根据最大似然函数的公式:

技术分享图片

  其中:

技术分享图片

  取对数似然函数,并根据对数计算公式继续化简:

技术分享图片

  由①可以得知:

技术分享图片

  现在可以得出最终结论:

技术分享图片


  作者:我是8位的

  出处:http://www.cnblogs.com/bigmonkey

  本文以学习、研究和分享为主,如需转载,请联系本人,标明作者和出处,非商业用途! 

  扫描二维码关注公作者众号“我是8位的”

技术分享图片

概率笔记11——一维正态分布的最大似然估计

原文:https://www.cnblogs.com/bigmonkey/p/11353662.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!