

悬线法(好像)是可以解决给定矩阵中满足条件的最大子矩阵的样子
先就提论题
设 f[i][j] 为从(i,j) 点扩展最多能达到的最左端的点
\(\color{red}{然后呢?}\)
设l[i][j] 为从(i,j) 点扩展能达到的最右端的点
\(\color{blue}{然后呢?}\)
设up[i][j] 为从(i,j)点能扩展到的上界
然后就是\(\color{green}{预处理}\)
从左往右扫 : f[i][j] = f[i][j-1]
从右往左扫 : l[i][j] = l[i][j+1]
以上就是横向的情况,那么纵向的呢?
up[i][j] = up[i][j-1]
r[i][j] = r[i-1][j]
l[i][j] = l[i-1][j]
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#define maxn 3010
using namespace std ;
int read() {
int x = 0 , f = 1 ; char s = getchar() ;
while(s > '9' || s < '0') {if(s == '-') f = -1 ; s = getchar() ;}
while(s <='9' && s >='0') {x = x * 10 + (s-'0'); s = getchar() ;}
return x*f ;
}
int a[maxn][maxn] , Left[maxn][maxn] , Right[maxn][maxn] , up[maxn][maxn] ;
int n , m , ans1 , ans2 ;
int main () {
n = read() , m = read() ;
for(int i = 1 ; i <= n ; i ++) {
for(int j = 1 ; j <= m ; j ++) {
a[i][j] = read() ;
Left[i][j] = j,Right[i][j] = j ;
up[i][j] = 1 ;
}
}
for(int i = 1 ; i <= n ; i ++) {
for(int j = 2 ; j <= m ; j ++) {
if(a[i][j] != a[i][j-1]) {
Left[i][j] = Left[i][j-1] ;
}
}
}
for(int i = 1 ; i <= n ; i ++) {
for(int j = m - 1 ; j > 0 ; j --) {
if(a[i][j] != a[i][i+1]) {
Right[i][j] = Right[i][j+1] ;
}
}
}
for(int i = 1 ; i <= n ; i ++) {
for(int j = 1 ; j <= m ; j ++) {
if(i>1 && a[i][j] != a[i-1][j]) {
Left[i][j] = max(Left[i][j],Left[i-1][j]) ;
Right[i][j] = min(Right[i][j] , Right[i-1][j]) ;
up[i][j] = up[i-1][j] + 1 ;
}
int a = Right[i][j] - Left[i][j] + 1 ;
int b = min(a,up[i][j] ) ;
ans1 = max(ans1,b*b) ;
ans2 = max(ans2,a*up[i][j] );
}
}
printf("%d\n%d",ans1,ans2) ;
return 0 ;
}
原文:https://www.cnblogs.com/lyt020321/p/11372824.html